234 research outputs found
Recommended from our members
Atmospheric Mars Entry and Landing Investigations & Analysis (AMELIA) by ExoMars 2016 Schiaparelli Entry Descent Module
Analyzing the effects of surface distribution of pores in cell electroporation for a cell membrane containing cholesterol
This paper presents a model and numerical analysis (simulations) of
transmembrane potential induced in biological cell membrane under the influence
of externally applied electric field (i.e., electroporation). This model
differs from the established models of electroporation in two distinct ways.
Firstly, it incorporates the presence of cholesterol (~20% mole-fraction) in
biological membrane. Secondly, it considers the distribution of pores as a
function of the variation of transmembrane potential from one region of the
cell to another. Formulation is based on the role of membrane tension and
electrical forces in the formation of pores in a cell membrane, which is
considered as an infinitesimally thin insulator. The model has been used to
explore the process of creation and evolution of pores and to determine the
number and size of pores as a function of applied electric field (magnitude and
duration). Results show that the presence of cholesterol enhances poration by
changing the membrane tension. Analyses indicate that the number of pores and
average pore radii differ significantly from one part of the cell to the other.
While some regions of the cell membrane undergo rapid and dense poration,
others remain unaffected. The method can be a useful tool for a more realistic
prediction of pore formation in cells subjected to electroporation.Comment: 11 pages, 3 figures. v2: added new references, grammatical changes,
corrected typo
Strong tidal dissipation in Saturn and constraints on Enceladus' thermal state from astrometry
Tidal interactions between Saturn and its satellites play a crucial role in
both the orbital migration of the satellites and the heating of their
interiors. Therefore constraining the tidal dissipation of Saturn (here the
ratio k2/Q) opens the door to the past evolution of the whole system. If
Saturn's tidal ratio can be determined at different frequencies, it may also be
possible to constrain the giant planet's interior structure, which is still
uncertain. Here, we try to determine Saturn's tidal ratio through its current
effect on the orbits of the main moons, using astrometric data spanning more
than a century. We find an intense tidal dissipation (k2/Q= (2.3 \pm 0.7)
\times 10-4), which is about ten times higher than the usual value estimated
from theoretical arguments. As a consequence, eccentricity equilibrium for
Enceladus can now account for the huge heat emitted from Enceladus' south pole.
Moreover, the measured k2/Q is found to be poorly sensitive to the tidal
frequency, on the short frequency interval considered. This suggests that
Saturn's dissipation may not be controlled by turbulent friction in the fluid
envelope as commonly believed. If correct, the large tidal expansion of the
moon orbits due to this strong Saturnian dissipation would be inconsistent with
the moon formations 4.5 Byr ago above the synchronous orbit in the Saturnian
subnebulae. But it would be compatible with a new model of satellite formation
in which the Saturnian satellites formed possibly over longer time scale at the
outer edge of the main rings. In an attempt to take into account for possible
significant torques exerted by the rings on Mimas, we fitted a constant rate
da/dt on Mimas semi-major axis, also. We obtained an unexpected large
acceleration related to a negative value of da/dt= -(15.7 \pm 4.4) \times 10-15
au/day
Recommended from our members
ExoMars 2020 – AMELIA: the EDL science experiment for the entry and descent module of the ExoMars 2020 mission
Domain Growth Kinetics in a Cell-sized Liposome
We investigated the kinetics of domain growth on liposomes consisting of a
ternary mixture (unsaturated phospholipid, saturated phospholipid, and
cholesterol) by temperature jump. The domain growth process was monitored by
fluorescence microscopy, where the growth was mediated by the fusion of domains
through the collision. It was found that an average domain size r develops with
time t as r ~ t^0.15, indicating that the power is around a half of the
theoretical expectation deduced from a model of Brownian motion on a
2-dimensional membrane. We discuss the mechanism of the experimental scaling
behavior by considering the elasticity of the membrane
ExoMars 2016 Schiaparelli Module Trajectory and Atmospheric Profiles Reconstruction: Analysis of the On-board Inertial and Radar Measurements
On 19th October 2016 Schiaparelli module of the ExoMars 2016 mission flew through the Mars atmosphere. After successful entry and descent under parachute, the module failed the last part of the descent and crashed on the Mars surface. Nevertheless the data transmitted in real time by Schiaparelli during the entry and descent, together with the entry state vector as initial condition, have been used to reconstruct both the trajectory and the profiles of atmospheric density, pressure and temperature along the traversed path.
The available data-set is only a small sub-set of the whole data acquired by Schiaparelli, with a limited data rate (8 kbps) and a large gap during the entry because of the plasma blackout on the communications.
This paper presents the work done by the AMELIA (Atmospheric Mars Entry and Landing Investigations and Analysis) team in the exploitation of the available inertial and radar data. First a reference trajectory is derived by direct integration of the inertial measurements and a strategy to overcome the entry data gap is proposed. First-order covariance analysis is used to estimate the uncertainties on all the derived parameters. Then a refined trajectory is computed incorporating the measurements provided by the on-board radar altimeter.
The derived trajectory is consistent with the events reported in the telemetry and also with the impact point identified on the high-resolution images of the landing site.
Finally, atmospheric profiles are computed tacking into account the aerodynamic properties of the module. Derived profiles result in good agreement with both atmospheric models and available remote sensing observations
Recommended from our members
Martian CO<sub>2</sub> Ice Observation at High Spectral Resolution With ExoMars/TGO NOMAD
The Nadir and Occultation for MArs Discovery (NOMAD) instrument suite aboard ExoMars/Trace Gas Orbiter spacecraft is mainly conceived for the study of minor atmospheric species, but it also offers the opportunity to investigate surface composition and aerosols properties. We investigate the information content of the Limb, Nadir, and Occultation (LNO) infrared channel of NOMAD and demonstrate how spectral orders 169, 189, and 190 can be exploited to detect surface CO2 ice. We study the strong CO2 ice absorption band at 2.7 μm and the shallower band at 2.35 μm taking advantage of observations across Martian Years 34 and 35 (March 2018 to February 2020), straddling a global dust storm. We obtain latitudinal‐seasonal maps for CO2 ice in both polar regions, in overall agreement with predictions by a general climate model and with the Mars Express/OMEGA spectrometer Martian Years 27 and 28 observations. We find that the narrow 2.35 μm absorption band, spectrally well covered by LNO order 189, offers the most promising potential for the retrieval of CO2 ice microphysical properties. Occurrences of CO2 ice spectra are also detected at low latitudes and we discuss about their interpretation as daytime high altitude CO2 ice clouds as opposed to surface frost. We find that the clouds hypothesis is preferable on the basis of surface temperature, local time and grain size considerations, resulting in the first detection of CO2 ice clouds through the study of this spectral range. Through radiative transfer considerations on these detections we find that the 2.35 μm absorption feature of CO2 ice clouds is possibly sensitive to nm‐sized ice grains
Pupillary Stroop effects
We recorded the pupil diameters of participants performing the words’ color-naming Stroop task (i.e., naming the color of a word that names a color). Non-color words were used as baseline to firmly establish the effects of semantic relatedness induced by color word distractors. We replicated the classic Stroop effects of color congruency and color incongruency with pupillary diameter recordings: relative to non-color words, pupil diameters increased for color distractors that differed from color responses, while they reduced for color distractors that were identical to color responses. Analyses of the time courses of pupil responses revealed further differences between color-congruent and color-incongruent distractors, with the latter inducing a steep increase of pupil size and the former a relatively lower increase. Consistent with previous findings that have demonstrated that pupil size increases as task demands rise, the present results indicate that pupillometry is a robust measure of Stroop interference, and it represents a valuable addition to the cognitive scientist’s toolbox
After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission
NASA’s Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos’s response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing that a particular direction-specific β will be directly determined by the DART results, and that a related direction-specific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos’s near-surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction
After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission
NASA’s Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos’s response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing that a particular direction-specific β will be directly determined by the DART results, and that a related direction-specific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos’s near-surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction
- …