2 research outputs found

    Polymer coated iron nanoparticles: Radiolabeling & in vitro studies

    No full text
    PubMed: 323511922-s2.0-85103993228Background: Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used for targeted drug delivery systems due to their unique magnetic properties. Objective: In this study, it has been aimed to develop a novel targeted99mTc radiolabeled polymeric drug delivery system for Gemcitabine (GEM). Methods: Gemcitabine, an anticancer agent, was encapsulated into polymer nanoparticles (PLGA) together with iron oxide nanoparticles via double emulsion technique and then labeled with99mTc. SPIONs were synthesized by reduction–coprecipitation method and encapsulated with oleic acid for surface modification. Size distribution and the morphology of the synthesized nanoparticles were characterized by dynamic light scattering (DLS) and scanning electron microscopy (SEM), respectively. The radiolabeling yield of SPION-PLGAGEM nanoparticles was determined via Thin Layer Radio Chromatography (TLRC). Cytotoxicity of GEM loaded SPION-PLGA was investigated on MDA-MB-231 and MCF7 breast cancer cells in vitro. Results: SEM images displayed that the average size of the drug-free nanoparticles was 40 nm and the size of the drug-loaded nanoparticles was 50 nm. The diameter of nanoparticles was determined as 366.6 nm by DLS, while zeta potential was found as 29 mV. SPION was successfully coated with PLGA, which was confirmed by FTIR. GEM encapsulation efficiency of SPION-PLGA was calculated as 4±0.16% by means of HPLC. Radiolabeling yield of SPION-PLGA-GEM nanoparticles was determined as 97.8±1.75% via TLRC. Cytotoxicity of GEM loaded SPION-PLGA was investigated on MDA-MB-231 and MCF7 breast cancer cells. SPION-PLGA-GEM showed high uptake on MCF-7, while the incorporation rate was increased for both cell lines with external magnetic field application. Conclusion:99mTc labeled SPION-PLGA nanoparticles loaded with GEM may overcome some of the obstacles in anti-cancer drug delivery because of their appropriate size, non-toxic, and superparamagnetic characteristics. © 2021 Bentham Science Publishers.Celal Bayar University Scientific Research Projects Co-ordination Unit Grant Number: 2017-00

    Radioiodination of pimonidazole as a novel theranostic hypoxia probe

    No full text
    PubMed: 322284322-s2.0-85103993064Background: Tumors are defined as abnormal tissue masses, and one of the most important factors leading to the growth of these abnormal tissue masses is Vascular Endothelial Growth Factor, which stimulates angiogenesis by releasing cells under hypoxic conditions. Hypoxia has a vital role in cancer therapy, thus it is important to monitor hypoxia. The hypoxia marker Pimonidazole (PIM) is a candidate biomarker of cancer aggressiveness. Objective: The study aimed to perform radioiodination of PIM with Iodine-131 (131I) to join a theranostic approach. For this purpose, PIM was derived as PIM-TOS to be able to be radioiodinated. Methods: PIM was derived via a tosylation reaction. Derivatization product (PIM-TOS) was radioiodinated by using iodogen method and was analyzed by High-Performance Liquid Chromatography and Liquid chromatography-mass spectrometry. Thin layer radiochromatography was utilized for its quality control studies. Results: PIM was derived successfully after the tosylation reaction. The radioiodination yield of PIM-TOS was over 85%. Conclusion: In the current study, radioiodination potential of PIM with131I, as a potential theranostic hypoxia agent was investigated. Further experimental studies should be performed for developing a novel hypoxia probe including theranostics approaches. © 2021 Bentham Science Publishers.2012NBE016This study was financially supported by the Ege University Scientific Research Projects Coordination Unit., Izmir, Turkey (Grant Number: 2012NBE016)
    corecore