681 research outputs found

    Symplectic areas, quantization, and dynamics in electromagnetic fields

    Get PDF
    A gauge invariant quantization in a closed integral form is developed over a linear phase space endowed with an inhomogeneous Faraday electromagnetic tensor. An analog of the Groenewold product formula (corresponding to Weyl ordering) is obtained via a membrane magnetic area, and extended to the product of N symbols. The problem of ordering in quantization is related to different configurations of membranes: a choice of configuration determines a phase factor that fixes the ordering and controls a symplectic groupoid structure on the secondary phase space. A gauge invariant solution of the quantum evolution problem for a charged particle in an electromagnetic field is represented in an exact continual form and in the semiclassical approximation via the area of dynamical membranes.Comment: 39 pages, 17 figure

    Poisson sigma models and symplectic groupoids

    Full text link
    We consider the Poisson sigma model associated to a Poisson manifold. The perturbative quantization of this model yields the Kontsevich star product formula. We study here the classical model in the Hamiltonian formalism. The phase space is the space of leaves of a Hamiltonian foliation and has a natural groupoid structure. If it is a manifold then it is a symplectic groupoid for the given Poisson manifold. We study various families of examples. In particular, a global symplectic groupoid for a general class of two-dimensional Poisson domains is constructed.Comment: 34 page
    corecore