3 research outputs found

    Der mikroskopische Blick auf die Moleküle des Lebens : Massenspektrometrie: Wäge- und Analysetechnik in einem

    Get PDF
    Der wissenschaftliche Fortschritt in Chemie, Biowissenschaften und Medizin basiert auf den immer detaillierteren Erkenntnissen über die molekularen Prozesse des Lebens. Eine Voraussetzung dafür sind Fortschritte bei den analytischen Methoden, Techniken und Instrumenten. In dem heute zur Verfügung stehendem Instrumentarium spielt die Massenspektrometrie eine zunehmend wichtige Rolle. Wenn aktuell ein neuer Doping-Skandal durch die Presse geht, sind immer massenspektrometrische Techniken im Spiel: Sie ermöglichen den Nachweis von erlaubten und verbotenen Substanzen aller Art – auch Dopingmitteln

    Tfg (Trk fused gene) is a Carma-1/IKKgamma interacting protein involved in CD40-induced canonical NF-KB signaling

    Get PDF
    Carma-1 is required for B cell receptor-/CD40- and T cell receptor-/CD28-induced B- and T-cell activation via JNK and NF-betaB. In B cells, Carma-1 becomes phosphorylated by PKCbeta, leading to its oligomerization. Subsequent Bcl10 binding induces IKKbeta-activation and, thereby, canonical NF-KB signalling. Despite these findings it is still unknown how exactly Carma-1 is connected to the plasma membrane and to the IKK-complex. Therefore, we purified Carma-1 complexes from mouse CH12 B cells using anti-Carma-1 affinity columns. Mass spectrometric analyses of the column eluates demonstrated the presence of Carma-1 as well as three previously uncharacterized adaptor proteins in B cells, one of which was the Trk-fused gene (Tfg), an adaptor protein containing PB1 and coiledcoil domains. Whereas Tfg was originally identified as fusion partner of oncogenic Trk tyrosine kinase mutants, the normal cellular homologue of Tfg has so far not been described in B cells. However, Tfg has been shown in other systems to interact with IKKgamma and to enhance TNFinduced NF-KB activation. Tfg and Carma-1 co-localized at the plasma membrane and perinuclear structures in B cells. We further corroborated the interactions of Tfg, IKKgamma and Carma-1 by Blue Native gel electrophoresis, where Carma-1 and Tfg formed a 0.7–1 MDa complex. Ectopic expression of Tfg increased the molecular mass of IKKgamma complexes, fused IKKgamma, Bcl10 and Carma-1 complexes to a ~2 MDa complex, and increased basal and CD40-induced canonical activity of NF-KB and IKKbeta. In contrast, shRNA-mediated silencing of Tfg decreased CD40-induced IKKbeta activity. Very interestingly, in primary B cells, highest expression of Tfg was detected in marginal zone and B1 B cells, and Carma-1 and Tfg formed complexes in these B cells. Since Carma-1 is required for marginal zone B cell and B1 B cell development, we suggest that a functional interaction between Carma-1 and Tfg contributes to development and maintenance of these cells by means of canonical NF-KB signals

    Nitric oxide-independent vasodilator rescues heme-oxidized soluble guanylate cyclase from proteosomal degradation

    Get PDF
    Background: Nitric oxide (NO) is an essential vasodilator. In vascular diseases, oxidative stress attenuates NO signaling by both chemical scavenging of free NO and oxidation and down-regulation of its major intracellular receptor, the alpha/beta heterodimeric heme-containing soluble guanylate cyclase (sGC). Oxidation can also induce loss of sGC's heme and responsiveness to NO. Results: sGC activators such as BAY 58-2667 bind to oxidized/heme-free sGC and reactivate the enzyme to exert disease-specific vasodilation. Here we show that oxidation-induced down-regulation of sGC protein extends to isolated blood vessels. Mechanistically, degradation was triggered through sGC ubiquitination and proteasomal degradation. The heme-binding site ligand, BAY 58-2667, prevented sGC ubiquitination and stabilized both alpha and beta subunits. Conclusion: Collectively, our data establish oxidation-ubiquitination of sGC as a modulator of NO/cGMP signaling and point to a new mechanism of action for sGC activating vasodilators by stabilizing their receptor, oxidized/heme-free sGC
    corecore