12 research outputs found

    Clinical performance of a novel textile interface for neonatal chest electrical impedance tomography

    Get PDF
    Objective: Critically ill neonates and infants might particularly benefit from continuous chest electrical impedance tomography (EIT) monitoring at the bedside. In this study a textile 32-electrode interface for neonatal EIT examination has been developed and tested to validate its clinical performance. The objectives were to assess ease of use in a clinical setting, stability of contact impedance at the electrode–skin interface and possible adverse effects. Approach: Thirty preterm infants (gestational age: 30.3 ± 3.9 week (mean ± SD), postnatal age: 13.8 ± 28.2 d, body weight at inclusion: 1727 ± 869 g) were included in this multicentre study. The electrode–skin contact impedances were measured continuously for up to 3 d and analysed during the initial 20-min phase after fastening the belt and during a 10 h measurement interval without any clinical interventions. The skin condition was assessed by attending clinicians. Main results: Our findings imply that the textile electrode interface is suitable for long-term neonatal chest EIT imaging. It does not cause any distress for the preterm infants or discomfort. Stable contact impedance of about 300 Ohm was observed immediately after fastening the electrode belt and during the subsequent 20 min period. A slight increase in contact impedance was observed over time. Tidal variation of contact impedance was less than 5 Ohm. Significance: The availability of a textile 32-electrode belt for neonatal EIT imaging with simple, fast, accurate and reproducible placement on the chest strengthens the potential of EIT to be used for regional lung monitoring in critically ill neonates and infants

    Effect of routine suction on lung aeration in critically ill neonates and young infants measured with electrical impedance tomography

    Get PDF
    Endotracheal suctioning is a widely used procedure to remove secretions from the airways of ventilated patients. Despite its prevalence, regional effects of this maneuver have seldom been studied. In this study, we explore its effects on regional lung aeration in neonates and young infants using electrical impedance tomography (EIT) as part of the large EU-funded multicenter observational study CRADL. 200 neonates and young infants in intensive care units were monitored with EIT for up to 72 h. EIT parameters were calculated to detect changes in ventilation distribution, ventilation inhomogeneity and ventilation quantity on a breath-by-breath level 5-10 min before and after suctioning. The intratidal change in aeration over time was investigated by means of regional expiratory time constants calculated from all respiratory cycles using an innovative procedure and visualized by 2D maps of the thoracic cross-section. 344 tracheal suctioning events from 51 patients could be analyzed. They showed no or very small changes of EIT parameters, with a dorsal shift of the center of ventilation by 0.5% of the chest diameter and a 7% decrease of tidal impedance variation after suctioning. Regional time constants did not change significantly. Routine suctioning led to EIT-detectable but merely small changes of the ventilation distribution in this study population. While still a measure requiring further study, the time constant maps may help clinicians interpret ventilation mechanics in specific cases

    Clinical performance of a novel textile interface for neonatal chest electrical impedance tomography

    Get PDF
    Objective: Critically ill neonates and infants might particularly benefit from continuous chest electrical impedance tomography (EIT) monitoring at the bedside. In this study a textile 32-electrode interface for neonatal EIT examination has been developed and tested to validate its clinical performance. The objectives were to assess ease of use in a clinical setting, stability of contact impedance at the electrode–skin interface and possible adverse effects. Approach: Thirty preterm infants (gestational age: 30.3 ± 3.9 week (mean ± SD), postnatal age: 13.8 ± 28.2 d, body weight at inclusion: 1727 ± 869 g) were included in this multicentre study. The electrode–skin contact impedances were measured continuously for up to 3 d and analysed during the initial 20-min phase after fastening the belt and during a 10 h measurement interval without any clinical interventions. The skin condition was assessed by attending clinicians. Main results: Our findings imply that the textile electrode interface is suitable for long-term neonatal chest EIT imaging. It does not cause any distress for the preterm infants or discomfort. Stable contact impedance of about 300 Ohm was observed immediately after fastening the electrode belt and during the subsequent 20 min period. A slight increase in contact impedance was observed over time. Tidal variation of contact impedance was less than 5 Ohm. Significance: The availability of a textile 32-electrode belt for neonatal EIT imaging with simple, fast, accurate and reproducible placement on the chest strengthens the potential of EIT to be used for regional lung monitoring in critically ill neonates and infants

    Effect of sternal electrode gap and belt rotation on the robustness of pulmonary electrical impedance tomography parameters

    No full text
    Objective: Non-adhesive textile electrode belts offer several advantages over adhesive electrodes and are increasingly used in neonatal patients during continuous electrical impedance tomography (EIT) lung monitoring. However, non-adhesive belts may rotate in unsedated patients and discrepancies between chest circumference and belt sizes may result in a gap between electrodes near the sternum. This project aimed to determine the effects of belt rotation and sternal electrode gap on commonly used lung EIT parameters. Approach: We developed a simulation framework based on a 3D finite-element model and introduced lung regions with little or no ventilation that could be changed according to a decremental positive end-expiratory pressure (PEEP) trial. Four degrees of sternal gap and belt rotation were simulated and their effect on the EIT parameters silent spaces, centre of ventilation, global inhomogeneity index and overdistension/collapsed lung (OD/CL) analysed. Additionally, seven premature infants were examined to assess the influence of leftward and rightward belt rotations in a clinical setting. Main results: Small violations of the electrode equidistance criterion and rotations of the belts less than one electrode space exert only minor effects on the EIT parameters and do not impede the interpretation. Rotations of two and three electrode spaces induce non-negligible effects that might lead to flawed interpretations. The 'best PEEP' determined with the OD/CL approach was robust and identifiable with all studied sternal gaps and belt rotations. Significance: We revealed an important challenge for neonatal EIT applications related to a wide electrode gap at the sternum and belt rotation, which should be avoided in clinical application

    Effect of sternal electrode gap and belt rotation on the robustness of pulmonary electrical impedance tomography parameters

    Get PDF
    Objective: Non-adhesive textile electrode belts offer several advantages over adhesive electrodes and are increasingly used in neonatal patients during continuous electrical impedance tomography (EIT) lung monitoring. However, non-adhesive belts may rotate in unsedated patients and discrepancies between chest circumference and belt sizes may result in a gap between electrodes near the sternum. This project aimed to determine the effects of belt rotation and sternal electrode gap on commonly used lung EIT parameters. Approach: We developed a simulation framework based on a 3D finite-element model and introduced lung regions with little or no ventilation that could be changed according to a decremental positive end-expiratory pressure (PEEP) trial. Four degrees of sternal gap and belt rotation were simulated and their effect on the EIT parameters silent spaces, centre of ventilation, global inhomogeneity index and overdistension/collapsed lung (OD/CL) analysed. Additionally, seven premature infants were examined to assess the influence of leftward and rightward belt rotations in a clinical setting. Main results: Small violations of the electrode equidistance criterion and rotations of the belts less than one electrode space exert only minor effects on the EIT parameters and do not impede the interpretation. Rotations of two and three electrode spaces induce non-negligible effects that might lead to flawed interpretations. The 'best PEEP' determined with the OD/CL approach was robust and identifiable with all studied sternal gaps and belt rotations. Significance: We revealed an important challenge for neonatal EIT applications related to a wide electrode gap at the sternum and belt rotation, which should be avoided in clinical application

    Prolonged Continuous Monitoring of Regional Lung Function in Infants with Respiratory Failure.

    No full text
    Rationale: Electrical impedance tomography (EIT) allows instantaneous and continuous visualization of regional ventilation and changes in end-expiratory lung volume at the bedside. There is particular interest in using EIT for monitoring in critically ill neonates and young children with respiratory failure. Previous studies have focused only on short-term monitoring in small populations. The feasibility and safety of prolonged monitoring with EIT in neonates and young children has not been demonstrated yet. Objectives: To evaluate the feasibility and safety of long-term EIT monitoring in a routine clinical setting and to describe changes in ventilation distribution and homogeneity over time and with positioning in a multi-center cohort of neonates and young children with respiratory failure. Methods: At four European University Hospitals, we conducted an observational study (NCT02962505) on 200 patients with post-menstrual ages (PMA) between 25 weeks and 36 months, at risk for or suffering from respiratory failure. Continuous EIT data were obtained using a novel textile 32-electrode interface and recorded at 48 images/s for up to 72 hours. Clinicians were blinded to EIT images during the recording. EIT parameters and the effects of body position on ventilation distribution were analyzed offline. Results: The average duration of EIT measurements was 53±20 hours. Skin contact impedance was sufficient to allow image reconstruction for valid ventilation analysis during 92[77-98]% (median[interquartile range]) of examination time. EIT examinations were well tolerated, with minor skin irritations (temporary redness or imprint) occurring in 10% of patients and no moderate or severe adverse events. Higher ventilation amplitude was found in the dorsal and right lung areas when compared with the ventral and left regions respectively. Prone positioning resulted in an increase in the ventilation-related EIT signal in the dorsal hemithorax, indicating increased ventilation of the dorsal lung areas. Lateral positioning led to a redistribution of ventilation towards the dependent lung in preterm infants and to the non-dependent lung in patients with PMA above 37 weeks. Conclusions: EIT allows continuous long-term monitoring of regional lung function in neonates and young children for up to 72 hours with minimal adverse effects. Our study confirmed the presence of posture-dependent changes in ventilation distribution and their dependency on PMA in a large patient cohort

    Prolonged Continuous Monitoring of Regional Lung Function in Infants with Respiratory Failure

    Get PDF
    Rationale: Electrical impedance tomography (EIT) allows instantaneous and continuous visualization of regional ventilation and changes in end-expiratory lung volume at the bedside. There is particular interest in using EIT for monitoring in critically ill neonates and young children with respiratory failure. Previous studies have focused only on short-term monitoring in small populations. The feasibility and safety of prolonged monitoring with EIT in neonates and young children have not been demonstrated yet. Objectives: To evaluate the feasibility and safety of long-term EIT monitoring in a routine clinical setting and to describe changes in ventilation distribution and homogeneity over time and with positioning in a multicenter cohort of neonates and young children with respiratory failure. Methods: At four European University hospitals, we conducted an observational study (NCT02962505) on 200 patients with postmenstrual ages (PMA) between 25 weeks and 36 months, at risk for or suffering from respiratory failure. Continuous EIT data were obtained using a novel textile 32-electrode interface and recorded at 48 images/s for up to 72 hours. Clinicians were blinded to EIT images during the recording. EIT parameters and the effects of body position on ventilation distribution were analyzed offline. Results: The average duration of EIT measurements was 53 6 20 hours. Skin contact impedance was sufficient to allow image reconstruction for valid ventilation analysis during a median of 92% (interquartile range, 77–98%) of examination time. EIT examinations were well tolerated, with minor skin irritations (temporary redness or imprint) occurring in 10% of patients and no moderate or severe adverse events. Higher ventilation amplitude was found in the dorsal and right lung areas when compared with the ventral and left regions, respectively. Prone positioning resulted in an increase in the ventilation-related EIT signal in the dorsal hemithorax, indicating increased ventilation of the dorsal lung areas. Lateral positioning led to a redistribution of ventilation toward the dependent lung in preterm infants and to the nondependent lung in patients with PMA . 37 weeks. Conclusions: EIT allows continuous long-term monitoring of regional lung function in neonates and young children for up to 72 hours with minimal adverse effects. Our study confirmed the presence of posture-dependent changes in ventilation distribution and their dependency on PMA in a large patient cohort
    corecore