13 research outputs found
Studies on "Sappe" disease of the silkworm, Bombyx mori : II. Effect of age of larvae on the manifestation of the disease
The effect of age of the larvae on the manifestation of the "Sappe" disease of the silkworm by oral inoculation of different pathogens, viz., Aerobacter cloacae, Pseudomonas boreopolis, Escherichia freundii, Achromobacter delmarvae, A. Superficialis, Pseudomonas ovalis, and Staphylococcus albus was tested. It was found that the reaction of the larva to the pathogen was influenced by its age. Some, e.g., Escherichia freundii, were more lethal when introduced at early stages whereas certain others, e.g., Aerobacter cloacae and Staphylococcus albus, caused maximum damage when invading older larvae. Irrespective of the age of infection, death of the worms mainly occurred during molting and before spinning. The studies also indicated that growth and mortality of the larvae were affected differentially by the pathogens
Enzymatic formulation capable of degrading scrapie prion under mild digestion conditions
The prion agent is notoriously resistant to common proteases and conventional sterilisation procedures. The current methods known to destroy prion infectivity such as incineration, alkaline and thermal hydrolysis are harsh, destructive, environmentally polluting and potentially hazardous, thus limit their applications for decontamination of delicate medical and laboratory devices, remediation of prion contaminated environment and for processing animal by-products including specified risk materials and carcases. Therefore, an environmentally friendly, non-destructive enzymatic degradation approach is highly desirable. A feather-degrading Bacillus licheniformis N22 keratinase has been isolated which degraded scrapie prion to undetectable level of PrPSc signals as determined by Western Blot analysis. Prion infectivity was verified by ex vivo cell-based assay. An enzymatic formulation combining N22 keratinase and biosurfactant derived from Pseudomonas aeruginosa degraded PrPSc at 65°C in 10 min to undetectable level -. A time-course degradation analysis carried out at 50°C over 2 h revealed the progressive attenuation of PrPSc intensity. Test of residual infectivity by standard cell culture assay confirmed that the enzymatic formulation reduced PrPSc infectivity to undetectable levels as compared to cells challenged with untreated standard scrapie sheep prion (SSBP/1) (p-value = 0.008 at 95% confidence interval). This novel enzymatic formulation has significant potential application for prion decontamination in various environmentally friendly systems under mild treatment conditions