8 research outputs found

    Selective autophagy of mitochondria on a ubiquitin-endoplasmic reticulum platform

    Get PDF
    Correction: Developmental Cell, Volume 55, Issue 2 https://doi.org/10.1016/j.devcel.2020.10.002The dynamics and co-ordination between autophagy machinery and selective receptors during mitophagy are unknown. Also unknown is whether mitophagy depends on pre-existing membranes, or is triggered on the surface of damaged mitochondria. Using a ubiquitin-dependent mitophagy inducer, the lactone ivermectin, we have combined genetic and imaging experiments to address these questions. Ubiquitination of mitochondrial fragments is required earliest followed by autophosphorylation of TBK1. Next, early essential autophagy proteins FIP200 and ATG13 act at different steps whereas ULK1/2 are dispensable. Receptors act temporally and mechanistically upstream of ATG13 but downstream of FIP200. The VPS34 complex functions at the omegasome step. ATG13 and optineurin target mitochondria in a discontinuous oscillatory way suggesting multiple initiation events. Targeted ubiquitinated mitochondrial are cradled by endoplasmic reticulum strands even without functional autophagy machinery and mitophagy adaptors. We propose that damaged mitochondria are ubiquitinated and dynamically encased in ER strands providing platforms for formation of the mitophagosomes.Peer reviewe

    Building arks for tRNA: Structure and function of the Arc1p family of non-catalytic tRNA-binding proteins

    Get PDF
    Following the intricate architecture of the eukaryotic cell, protein synthesis involves formation of many macromolecular assemblies, some of which are composed by tRNA-aminoacylation enzymes. Protein-protein and protein-tRNA interactions in these complexes can be facilitated by non-catalytic tRNA-binding proteins. This review focuses on the dissection of the molecular, structural and functional properties of a particular family of such proteins: yeast Arc1p and its homologues in pro-karyotes and higher eukaryotes. They represent paradigms of the strategies employed for the organization of sophisticated and dynamic nanostructures supporting spatio-temporal cellular organization. (C) 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved

    Phosphorylation of Phosphatidate Phosphatase Regulates Its Membrane Association and Physiological Functions in Saccharomyces cerevisiae: IDENTIFICATION OF SER602, THR723, AND SER744 AS THE SITES PHOSPHORYLATED BY CDC28 (CDK1)-ENCODED CYCLIN-DEPENDENT KINASE*

    Full text link
    The Saccharomyces cerevisiae PAH1-encoded phosphatidate phosphatase (PAP) catalyzes the penultimate step in the synthesis of triacylglycerol and plays a role in the transcriptional regulation of phospholipid synthesis genes. PAP is phosphorylated at multiple Ser and Thr residues and is dephosphorylated for in vivo function by the Nem1p-Spo7p protein phosphatase complex localized in the nuclear/endoplasmic reticulum membrane. In this work, we characterized seven previously identified phosphorylation sites of PAP that are within the Ser/Thr-Pro motif. When expressed on a low copy plasmid, wild type PAP could not complement the pah1Δ mutant in the absence of the Nem1p-Spo7p complex. However, phosphorylation-deficient PAP (PAP-7A) containing alanine substitutions for the seven phosphorylation sites bypassed the requirement of the phosphatase complex and complemented the pah1Δ nem1Δ mutant phenotypes, such as temperature sensitivity, nuclear/endoplasmic reticulum membrane expansion, decreased triacylglycerol synthesis, and derepression of INO1 expression. Subcellular fractionation coupled with immunoblot analysis showed that PAP-7A was highly enriched in the membrane fraction. In fluorescence spectroscopy analysis, the PAP-7A showed tighter association with phospholipid vesicles than wild type PAP. Using site-directed mutagenesis of PAP, we identified Ser602, Thr723, and Ser744, which belong to the seven phosphorylation sites, as the sites phosphorylated by the CDC28 (CDK1)-encoded cyclin-dependent kinase. Compared with the dephosphorylation mimic of the seven phosphorylation sites, alanine substitution for Ser602, Thr723, and/or Ser744 had a partial effect on circumventing the requirement for the Nem1p-Spo7p complex
    corecore