4 research outputs found

    Building a community-based open harmonised reference data repository for global crop mapping

    Get PDF
    Reference data is key to produce reliable crop type and cropland maps. Although research projects, national and international programs as well as local initiatives constantly gather crop related reference data, finding, collecting, and harmonizing data from different sources is a challenging task. Furthermore, ethical, legal, and consent-related restrictions associated with data sharing represent a common dilemma faced by international research projects. We address these dilemmas by building a community-based, open, harmonised reference data repository at global extent, ready for model training or product validation. Our repository contains data from different sources such as the Group on Earth Observations Global Agricultural Monitoring Initiative (GEOGLAM) Joint Experiment for Crop Assessment and Monitoring (JECAM) sites, the Radiant MLHub, the Future Harvest (CGIAR) centers, the National Aeronautics and Space Administration Food Security and Agriculture Program (NASA Harvest), the International Institute for Applied Systems Analysis (IIASA) citizen science platforms (LACO-Wiki and Geo-Wiki), as well as from individual project contributions. Data of 2016 onwards were collected, harmonised, and annotated. The data sets spatial, temporal, and thematic quality were assessed applying rules developed in this research. Currently, the repository holds around 75 million harmonised observations with standardized metadata of which a large share is available to the public. The repository, funded by ESA through the WorldCereal project, can be used for either the calibration of image classification deep learning algorithms or the validation of Earth Observation generated products, such as global cropland extent and maize and wheat maps. We recommend continuing and institutionalizing this reference data initiative e.g. through GEOGLAM, and encouraging the community to publish land cover and crop type data following the open science and open data principles

    WorldCereal: a dynamic open-source system for global-scale, seasonal, and reproducible crop and irrigation mapping

    Get PDF
    The challenge of global food security in the face of population growth, conflict and climate change requires a comprehensive understanding of cropped areas, irrigation practices and the distribution of major commodity crops like maize and wheat. However, such understanding should preferably be updated at seasonal intervals for each agricultural system rather than relying on a single annual assessment. Here we present the European Space Agency funded WorldCereal system, a global, seasonal, and reproducible crop and irrigation mapping system that addresses existing limitations in current global-scale crop and irrigation mapping. WorldCereal generates a range of global products, including temporary crop extent, seasonal maize and cereals maps, seasonal irrigation maps, seasonal active cropland maps, and confidence layers providing insights into expected product quality. The WorldCereal product suite for the year 2021 presented here serves as a global demonstration of the dynamic open-source WorldCereal system. The presented products are fully validated, e.g., global user's and producer's accuracies for the annual temporary crop product are 88.5 % and 92.1 %, respectively. The WorldCereal system provides a vital tool for policymakers, international organizations, and researchers to better understand global crop and irrigation patterns and inform decision-making related to food security and sustainable agriculture. Our findings highlight the need for continued community efforts such as additional reference data collection to support further development and push the boundaries for global agricultural mapping from space. The global products are available at https://doi.org/10.5281/zenodo.7875104 (Van Tricht et al., 2023)

    Efficacy and safety of Bimagrumab in sporadic inclusion body myositis

    No full text
    Objective To assess long-term (2 years) effects of bimagrumab in participants with sporadic inclusion body myositis (sIBM). Methods Participants (aged 36–85 years) who completed the core study (RESILIENT [Efficacy and Safety of Bimagrumab/BYM338 at 52 Weeks on Physical Function, Muscle Strength, Mobility in sIBM Patients]) were invited to join an extension study. Individuals continued on the same treatment as in the core study (10 mg/kg, 3 mg/kg, 1 mg/kg bimagrumab or matching placebo administered as IV infusions every 4 weeks). The co–primary outcome measures were 6-minute walk distance (6MWD) and safety. Results Between November 2015 and February 2017, 211 participants entered double-blind placebo-controlled period of the extension study. Mean change in 6MWD from baseline was highly variable across treatment groups, but indicated progressive deterioration from weeks 24–104 in all treatment groups. Overall, 91.0% (n = 142) of participants in the pooled bimagrumab group and 89.1% (n = 49) in the placebo group had ≥1 treatment-emergent adverse event (AE). Falls were slightly higher in the bimagrumab 3 mg/kg group vs 10 mg/kg, 1 mg/kg, and placebo groups (69.2% [n = 36 of 52] vs 56.6% [n = 30 of 53], 58.8% [n = 30 of 51], and 61.8% [n = 34 of 55], respectively). The most frequently reported AEs in the pooled bimagrumab group were diarrhea 14.7% (n = 23), involuntary muscle contractions 9.6% (n = 15), and rash 5.1% (n = 8). Incidence of serious AEs was comparable between the pooled bimagrumab and the placebo group (18.6% [n = 29] vs 14.5% [n = 8], respectively). Conclusion Extended treatment with bimagrumab up to 2 years produced a good safety profile and was well-tolerated, but did not provide clinical benefits in terms of improvement in mobility. The extension study was terminated early due to core study not meeting its primary endpoint
    corecore