26 research outputs found

    Dominance attributions following damage to the ventromedial prefrontal cortex

    Get PDF
    Damage to the human ventromedial prefrontal cortex (VM) can result in dramatic and maladaptive changes in social behavior despite preservation of most other cognitive abilities. One important aspect of social cognition is the ability to detect social dominance, a process of attributing from particular social signals another person's relative standing in the social world. To test the role of the VM in making attributions of social dominance, we designed two experiments: one requiring dominance judgments from static pictures of faces, the second requiring dominance judgments from film clips. We tested three demographically matched groups of subjects: subjects with focal lesions in the VM (n=15), brain-damaged comparison subjects with lesions excluding the VM (n=11), and a reference group of normal individuals with no history of neurological disease (n=32). Contrary to our expectation, we found that subjects with VM lesions gave dominance judgments on both tasks that did not differ significantly from those given by the other groups. Despite their grossly normal performance, however, subjects with VM lesions showed more subtle impairments specifically when judging static faces: They were less discriminative in their dominance judgments, and did not appear to make normal use of gender and age of the faces in forming their judgments. The findings suggest that, in the laboratory tasks we used, damage to the VM does not necessarily impair judgments of social dominance, although it appears to result in alterations in strategy that might translate into behavioral impairments in real life

    The global role of G6PD in infection and immunity

    Get PDF
    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans. G6PD is an essential enzyme in the pentose phosphate pathway (PPP), generating NADPH needed for cellular biosynthesis and reactive oxygen species (ROS) homeostasis, the latter especially key in red blood cells (RBCs). Beyond the RBC, there is emerging evidence that G6PD exerts an immunologic role by virtue of its functions in leukocyte oxidative metabolism and anabolic synthesis necessary for immune effector function. We review these here, and consider the global immunometabolic role of G6PD activity and G6PD deficiency in modulating inflammation and immunopathology

    A fatal case of immune hyperhemolysis with bone marrow necrosis in a patient with sickle cell disease

    Get PDF
    In patients with sickle cell disease, hyperhemolysis is a rare but life-threatening complication of transfusion. In this case report, we describe a 61 year-old woman with hemoglobin sickle cell (SC) disease and history of alloimmunization who developed hyperhemolysis associated with a transfusion. She was found to have a warm and a clinically-significant cold autoantibody. Severe anemia (Hb 2.7 g/dL) with reticulocytopenia and thrombocytopenia prompted a bone marrow biopsy, which demonstrated extensive bone marrow necrosis. Despite treatment, the bone marrow failure did not improve and the patient died on hospital day 38. This case illustrates the potential risks of transfusion in a patient with sickle cell disease, especially one with previous hemolytic reactions. While uncommon, hyperhemolysis can cause death, in this case by extensive bone marrow necrosis. In patients with sickle cell disease, judicious use of red cell transfusions with phenotypically-matched units can diminish, but never completely abrogate, the risks associated with transfusion

    Red cell exchange to mitigate a delayed hemolytic transfusion reaction in a patient transfused with incompatible red blood cells

    No full text
    PURPOSE: A red cell exchange was performed to prevent a potentially fatal hemolytic transfusion reaction in a patient with anti-e who was transfused with e-antigen unscreened red blood cells during liver transplant surgery. CASE REPORT: A 64-year-old woman with cirrhosis due to hepatitis C was scheduled to receive a liver transplant. She had a previously documented anti-e, an antibody to the Rh(e)-antigen that is known to cause delayed hemolytic transfusion reactions. Pre-operatively and intra-operatively, she had massive hemorrhage which required transfusion of 34 e-antigen unscreened red blood cells (RBCs) most of which were incompatible. The hemoglobin dropped from 9.1 g/dL on post-operative day (POD)1 to 6.6 g/dL on POD6, with no evidence of blood loss. The bilirubin also increased from 5.0 mg/dL on POD 1 to 11.0 mg/dL on POD 6. As she was also becoming more hemodynamically unstable, a red cell exchange with 10 units of e-negative RBCs was performed on POD 6. She improved clinically and was extubated the following day. A few residual transfused e-positive red cells were detected after the red cell exchange until POD 13. CONCLUSION: This case illustrates how a red cell exchange can mitigate the potentially harmful effects of a delayed hemolytic transfusion reaction caused by red cell antibodies. With massive intraoperative blood loss it may not be possible to have antigen-negative RBCs immediately available, particularly for the e-antigen, which is present in 98% of the donor population. The ability to perform such a procedure may be life-saving in such patients. J. Clin. Apheresis 32:59-61, 2017. © 2016 Wiley Periodicals, Inc
    corecore