21 research outputs found

    Bilayer thickness and curvature influence binding and insertion of a pHLIP\u3csup\u3e®\u3c/sup\u3e peptide

    Get PDF
    The physical properties of lipid bilayers, such as curvature and fluidity, can affect the interactions of polypeptides with membranes, influencing biological events. Additionally, given the growing interest in peptide-based therapeutics, understanding the influence of membrane properties on membrane-associated peptides has potential utility. pH low insertion peptides (pHLIPs) are a family of water-soluble peptides that can insert across cell membranes in a pH-dependent manner, enabling the use of pH to follow peptide-lipid interactions. Here we study pHLIP interactions with liposomes varying in size and composition, to determine the influence of several key membrane physical properties. We find that pHLIP binding to bilayer surfaces at neutral pH is governed by the ease of access to the membrane’s hydrophobic core, which can be facilitated by membrane curvature, thickness, and the cholesterol content of the membrane. After surface binding, if the pH is lowered, the kinetics of pHLIP folding to form a helix and subsequent insertion across the membrane depends on the fluidity and energetic dynamics of the membrane. We showed that pHLIP is capable of forming a helix across lipid bilayers of different thicknesses at low pH. However, the kinetics of the slow phase of insertion corresponding to the translocation of C-terminal end of the peptide across lipid bilayer, vary approximately twofold, and correlate with bilayer thickness and fluidity. Although these influences are not large, local curvature variations in membranes of different fluidity could selectively influence surface binding in mixed cell populations

    pHLIP Peptide Interaction with a Membrane Monitored by SAXS

    Get PDF
    The pH (Low) Insertion Peptides (pHLIP® peptides) find application in studies of membrane-associated folding, since spontaneous insertion of these peptides is conveniently triggered by varying pH. Here we employed small angle X-ray scattering (SAXS) to investigate WT pHLIP® peptide oligomeric state in solution at high concentrations and monitor changes in liposome structure upon peptide insertion into the bilayer. We established that even at high concentrations (up to 300 μM) WT pHLIP® peptide at pH 8.0 does not form oligomers higher than tetramers (which exhibit concentration-dependent transfer to monomeric state as it was shown previously). This finding has significance for medical applications, when high concentration of the peptide is injected into blood and diluted in blood circulation. The interaction of WT pHLIP® peptide with liposomes does not alter the unilamellar vesicle structure upon peptide adsorption by lipid bilayer at high pH or upon insertion across the bilayer at low pH. At the same time, SAXS data clearly reflect the insertion of the peptide into the membrane at low pH, which opens the possibility to investigate kinetic process of a polypeptide insertion and exit from the membrane in real time by time-resolved SAXS

    Modulation of the pHLIP Transmembrane Helix Insertion Pathway

    Get PDF
    The membrane-associated folding/unfolding of pH (low) insertion peptide (pHLIP) provides an opportunity to study how sequence variations influence the kinetics and pathway of peptide insertion into bilayers. Here, we present the results of steady-state and kinetics investigations of several pHLIP variants with different numbers of charged residues, with attached polar cargoes at the peptide\u27s membrane-inserting end, and with three single-Trp variants placed at the beginning, middle, and end of the transmembrane helix. Each pHLIP variant exhibits a pH-dependent interaction with a lipid bilayer. Although the number of protonatable residues at the inserting end does not affect the ultimate formation of helical structure across a membrane, it correlates with the time for peptide insertion, the number of intermediate states on the folding pathway, and the rates of unfolding and exit. The presence of polar cargoes at the peptide\u27s inserting end leads to the appearance of intermediate states on the insertion pathway. Cargo polarity correlates with a decrease of the insertion rate. We conclude that the existence of intermediate states on the folding and unfolding pathways is not mandatory and, in the simple case of a polypeptide with a noncharged and nonpolar inserting end, the folding and unfolding appears as an all-or-none transition. We propose a model for membrane-associated insertion/folding and exit/unfolding and discuss the importance of these observations for the design of new delivery agents for direct translocation of polar therapeutic and diagnostic cargo molecules across cellular membranes

    Evolving a Thermostable Terminal Deoxynucleotidyl Transferase

    No full text
    10.1021/acssynbio.0c00078ACS SYNTHETIC BIOLOGY971725-173
    corecore