4 research outputs found
Accidental Use of Milk With an Increased Concentration of Aflatoxins Causes Significant DNA Damage in Hospital Workers Exposed to Ionizing Radiation
© Copyright © 2020 Mrdjanovic, Sudji, Srdjenovic, Dojcinovic, Bogdanovic, Jakovljevic and Jurisic. The occupational exposure to ionizing radiation (Irad) or associated with mycotoxin-contaminated food may lead to genome damage and contribute to health risk. DNA damage in 80 blood samples of hospital workers occupationally exposed to low—doses of Irad was compared with 80 healthy controls. Among them, 40 participants accidentally consumed milk with increased concentration of Aflatoxin. All participants underwent the testing for micronuclei from blood, and 40 of them 8-OHdG from urine. The frequency of micronuclei (MN) was analyzed by cytokinesis-block peripheral blood lymphocytes and the level of urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) by ELISA. The Irad led to increased frequency of MN (p < 0.05) and 8-OHdG level at exposed hospital workers. The consumption of milk with increased concentration of aflatoxin probably raised MN frequency and 8-OHdG value. Higher consumption of aflatoxin-contaminated milk (≥2 L/monthly) caused significantly increased MN frequency and 8-OHdG value in comparison to lower milk intake (≤0.5 L/monthly). Also, confounding factors, such as age, gender, and smoking status of all participants were included in the study. The obtained results revealed an increased incidence of MN and 8-OHdG level among hospital workers exposed to low-doses of IRad and milk with increased aflatoxin concentration
The oxidative stress parameters as useful tools in evaluating the dna damage and changes in the complete blood count in hospital workers exposed to low doses of antineoplastic drugs and ionizing radiation
Hospital workers at the Oncology Department are occupationally exposed to antineo-plastic drugs (ANTNP) or low doses of ionizing radiation (Irrad). Therefore, the aim of this study was to evaluate the level of DNA damage, the oxidative stress parameters and complete blood count (CBC) of hospital workers in order to analyze the negative health effects of ANTNP and low dose Irrad. The frequency of micronuclei (MN) and proliferation index (PI) were analyzed by cytokinesis-block test. The oxidative stress biomarkers evaluated were the level of lipid peroxidation in plasma and catalase activity (CAT) in erythrocytes. A group of 86 hospital workers (35 exposed to ANTPN and 51 to Irrad) had increased MN frequency, CAT activity and level of lipid peroxidation compared to the control group, which consisted of 24 volunteers. The hemoglobin level was lower in the ANTNP group compared to thecontrol group, while a significant difference in RBC was rec-orded between thecontrol and Irrad groups, and in platelet count betweentheIrrad and ANTNP group. The results showed increased DNA damage, oxidative stress parameters, as well as impair-ment on complete blood count in hospital workers occupationally exposed to antineoplastic drugs and low-dose ionizing radiation. As this research has shown the importance of oxidative stress, we suggest that in addition to routine methods in periodic medical evaluation, the possibility of apply-ing oxidative stress parameters is considered. Moreover, hospital workers exposed to ANTNP and Irrad in the workplace should undergo not only a more complete health prevention procedure but also have a more appropriate health promotion