28 research outputs found

    Nucleation barrier, growth kinetics in ternary polymer blend filled with preferentially distributed carbon nanotubes

    No full text
    Structural properties, evolution of morphology and crystallization kinetics in immiscible polymer blends filled with multiwall carbon nanotubes (MWNTs) in the droplet phase were systematically investigated in this study. By grafting suitable macromolecules (here SAN, styrene acrylonitrile), that can drive the MWNTs to the droplet phase, allowed the understanding of the rate of nucleation and growth of the semicrystalline matrix in droplet-filled blends in contrast to matrix-filled blends. By blending 90 wt% of PVDF with 10 wt% ABS, matrix-droplet morphologies were generated and by grafting SAN onto MWNTs, the localization of the nanotubes was tuned to fill the droplet phase which otherwise prefers the matrix phase (here PVDF); driven by thermodynamics. The evolution of morphology under quiescent annealing conditions was assessed by SEM. The blends with SAN-g-MWNTs also coarsened as a function of time similar to neat blends however, to a lesser extent. Although, droplet laden MWNTs did not suppress coarsening in the blends but it still improved the tensile properties when compared with the neat blends. The fold surface free energy (as evaluated from isothermal crystallization kinetics) was estimated to be less in case of blends with only MWNTs in contrast to blends with SAN-g-MWNTs. This was attributed to the fact that matrix (here PVDF) filled with MWNTs experiences faster crystallization rate due to heterogeneous dispersion of nucleating agents (here MWNTs) in the matrix. However, when the SAN-g-MWNTs were mostly localized in the amorphous droplet phase (here ABS), PVDF experienced similar crystallization behavior like the neat PVDF/ABS blends. Taken together, our study demonstrates that lower amount of energy is required for the arrangement of PVDF chains into the crystal lattice upon cooling from the melt state and accelerate the crystallization process when the heteronucleating agents are localized in the matrix phase than when they are localized in the amorphous droplet phase. (C) 2017 Elsevier Ltd. All rights reserved

    Simultaneous enhancement in mechanical strength, electrical conductivity, and electromagnetic shielding properties in PVDF-ABS blends containing PMMA wrapped multiwall carbon nanotubes

    No full text
    A unique approach was adopted to drive the multiwall carbon nanotubes (MWNTs) to the interface of immiscible PVDF-ABS blends by wrapping the nanotubes with a mutually miscible homopolymer (PMMA). A tailor made interface with an improved stress transfer was achieved in the blends with PMMA wrapped MWNTs. This manifested in an impressive 108% increment in the tensile strength and 48% increment in the Young's modulus with 3 wt% PMMA wrapped MWNTs in striking contrast to the neat blends. As the PMMA wrapped MWNTs localized at the interface of PVDF-ABS blends, the electrical conductivity could be tuned with respect to only MWNTs, which were selectively localized in the PVDF phase, driven by thermodynamics. The electromagnetic shielding properties were assessed using a vector network analyser in a broad range of frequency, X-band (8-12 GHz) and Ku-band (12-18 GHz). Interestingly, enhanced EM shielding was achieved by this unique approach. The blends with only MWNTs shielded the EM waves mostly by reflection however, the blends with PMMA wrapped MWNTs (3 wt%) shielded mostly by absorption (62%). This study opens new avenues in designing materials, which show simultaneous improvement in mechanical, electrical conductivity and EM shielding properties

    Tailor-Made Distribution of Nanoparticles in Blend Structure toward Outstanding Electromagnetic Interference Shielding

    No full text
    Engineering blend structure with tailor-made distribution of nanoparticles is the prime requisite to obtain materials with extraordinary properties. Herein, a unique strategy of distributing nanoparticles in different phases of a blend structure has resulted in >99% blocking of incoming electromagnetic (EM) radiation. This is accomplished by designing a ternary polymer blend structure using polycarbonate (PC), poly(vinylidene fluoride) (PVDF), and poly(methyl methacrylate) (PMMA) to simultaneously improve the structural, electrical, and electromagnetic interference shielding (EMI). The blend structure was made conducting by preferentially localizing the multi-wall nanotubes (MWNTs) in the PVDF phase. By taking advantage of pp stacking MWNTs was noncovalently modified with an imidazolium based ionic liquid (IL). Interestingly, the enhanced dispersion of IL-MWNTs in PVDF improved the electrical conductivity of the blends significantly. While one key requisite to attenuate EM radiation (i.e., electrical conductivity) was achieved using MWNTs, the magnetic properties of the blend structure was tuned by introducing barium ferrite (BaFe) nanoparticles, which can interact with the incoming EM radiation. By suitably modifying the surface of BaFe nanoparticles, we can tailor their localization under the macroscopic processing condition. The precise localization of BaFe nanoparticles in the PC phase, due to nucleophilic substitution reaction, and the MWNTs in the PVDF phase not only improved the conductivity but also facilitated in absorption of the incoming microwave radiation due to synergetic effect from MWNT and BaFe. The shielding effectiveness (SE) was measured in X and K-u band, and an enhanced SE of -37 dB was noted at 18 GHz frequency. PMMA, which acted as an interfacial modifier in PC/PVDF blends further, resulting in a significant enhancement in the mechanical properties besides retaining high SE. This study opens a new avenue in designing mechanically strong microwave absorbers with a suitable combination of materials

    Simultaneous Improvement in Structural Properties and Microwave Shielding of Polymer Blends with Carbon Nanotubes

    No full text
    Precise control in dispersing nanostructured materials in a polymer blend structure is a key requirement in designing materials with tailor-made properties. In this study, the dispersion of a conducting additive (multiwalled carbon nanotubes, MWNTs) in a co-continuous polymer blend structure was controlled by introducing surface-active groups, which react in situ and localize in the thermodynamically nonpreferred phase. In addition, by modifying the MWNTs with a macromolecule, which is mutually miscible with the entities, the nanoscopic particles can be localized at the interface. This way, different MWNTs can be positioned in different phases under macroscopic processing conditions. Herein, we report that this unique strategy has led to simultaneous enhancement in both mechanical strength and electrical conductivity of the blend nanocomposites. In addition, intriguingly, the microwave shielding efficiency can also be tuned by this ordered arrangement of MWNTs in the blend structure in striking contrast to when the MWNTs are in the thermodynamically favored phase. An outstanding two-fold enhancement in the Young's modulus, as compared to control blends, and an impressive bulk electrical conductivity of 1 Sm-1 was noted for a particular blend structure wherein different MWNTs were positioned in different phases. In addition, the best blend structure designed here also exhibited a minimum reflection loss (RL) of approximately -61 dB and a shielding effectiveness of > 30 dB at 18 GHz. These data uncover the importance of polymer blends in designing lightweight electromagnetic interference (EMI) shielding materials

    Engineering nanostructured polymer blends with controlled nanoparticle location for excellent microwave absorption: a compartmentalized approach

    No full text
    In order to obtain better materials, control over the precise location of nanoparticles is indispensable. It is shown here that ordered arrangements of nanoparticles, possessing different characteristics (electrical/ magnetic dipoles), in the blend structure can result in excellent microwave absorption. This is manifested from a high reflection loss of ca. -67 dB for the best blend structure designed here. To attenuate electromagnetic radiation, the key parameters of high electrical conductivity and large dielectric/magnetic loss are targeted here by including a conductive material multiwall carbon nanotubes, MWNTs], ferroelectric nanostructured material with associated relaxations in the GHz frequency barium titanate, BT] and lossy ferromagnetic nanoparticles nickel ferrite, NF]. In this study, bi-continuous structures were designed using 50/50 (by wt) blends of polycarbonate (PC) and polyvinylidene fluoride (PVDF). The MWNTs were modified using an electron acceptor molecule, a derivative of perylenediimide, which facilitates p-p stacking with the nanotubes and stimulates efficient charge transport in the blends. The nanoscopic materials have specific affinity towards the PVDF phase. Hence, by introducing surface-active groups, an ordered arrangement can be tailored. To accomplish this, both BT and NF were first hydroxylated followed by the introduction of amine-terminal groups on the surface. The latter facilitated nucleophilic substitution reactions with PC and resulted in their precise location. In this study, we have shown for the first time that by a compartmentalized approach, superior EM attenuation can be achieved. For instance, when the nanoparticles were localized exclusively in the PVDF phase or in both the phases, the minimum reflection losses were ca. -18 dB (for the MWNT/BT mixture) and -29 dB (for the MWNT/NF mixture), and the shielding occurred primarily through reflection. Interestingly, by adopting the compartmentalized approach wherein the lossy materials were in the PC phase and the conductive materials (MWNT) were in the PVDF phase, outstanding reflection losses of ca. -57 dB (for the BT and MWNT combination) and -67 dB (for the NF and MWNT combination) were noted and the shielding occurred primarily through absorption. Thus, the approach demonstrates that nanoscopic structuring in the blends can be achieved under macroscopic processing conditions and this strategy can further be explored to design microwave absorbers

    Tuning the microwave absorption through engineered nanostructures in co-continuous polymer blends

    No full text
    Herein, we report tailor-made properties by dispersing nanostructured materials in a co-continuous polymer blend (PVDF/ABS) that is capable of shielding electromagnetic (EM) radiation. To accomplish this, lossy materials were employed like multi-walled carbon nanotubes (MWNTs), and barium titanate (BT), (which exhibit relaxation losses in the microwave frequency domain) and ferrites (like Fe3O4). To improve the state of dispersion, the MWNTs were non-covalently modified using 3,4,9,10-perylenetetracarboxylic dianhydride (PTCD) via pi-pi stacking, and for effective shielding the MWNTs were conjugated with either BT or Fe3O4 nanoparticles through suitable modifications. The hybrid nanoparticles were selectively localized in the PVDF phase, governed by its polarity, and exhibited excellent microwave attenuation. In order to gain insight into the dielectric and magnetic attributes, the microwave parameters were assessed systematically. Taken together, our results uncover polymer blend as a promising candidate for designing lightweight, thermally stable microwave absorber materials

    Microwave absorbers designed from PVDF/SAN blends containing multiwall carbon nanotubes anchored cobalt ferrite via a pyrene derivative

    No full text
    Lightweight and flexible electromagnetic shielding materials were designed by selectively localizing multiwall carbon nanotubes (MWNTs) anchored magnetic nanoparticles in melt mixed co-continuous blends of polyvinylidene fluoride (PVDF) and poly(styrene-co-acrylonitrile) (SAN). In order to facilitate better dispersion, the MWNTs were modified using pyrenebutyric acid (PBA) via pi-pi stacking. While one of the two-targeted properties, i.e., high electrical conductivity, was achieved by PBA modified MWNTs, high magnetic loss was accomplished by introducing nickel (NF) or cobalt ferrites (CF). Moreover, the attenuation by absorption can be tuned either by using NF (58% absorption) or CF (64% absorption) in combination with PBA-MWNTs. More interestingly, when CF was anchored on to MWNTs via the pyrene derivative, the minimum reflection loss attained was -55 dB in the Ku band (12-18 GHz) frequency and with a large bandwidth. In addition, the EM waves were blocked mostly by absorption (70%). This study opens new avenues in designing flexible and lightweight microwave absorbers

    Attenuating microwave radiation by absorption through controlled nanoparticle localization in PC/PVDF blends

    No full text
    Nanoscale ordering in a polymer blend structure is indispensable to obtain materials with tailored properties. It was established here that controlling the arrangement of nanoparticles, with different characteristics, in co-continuous PC/PVDF (polycarbonate/poly(vinylidene fluoride)) blends can result in outstanding microwave absorption (ca. 90%). An excellent reflection loss (RL) of ca. -71 dB was obtained for a model blend structure wherein the conducting (multiwall carbon nanotubes, MWNTs) and the magnetic inclusions (Fe3O4) are localized in PVDF and the dielectric inclusion (barium titanate, BT) is in PC. The MWNTs were modified using polyaniline, which facilitates better charge transport in the blends. Furthermore, by introducing surface active groups on BT nanoparticles and changing the macroscopic processing conditions, the localization of BT nanoparticles can be tailored, otherwise BT nanoparticles would localize in the preferred phase (PVDF). In this study, we have shown that by ordered arrangement of nanoparticles, the incoming EM radiation can be attenuated. For instance, when PANI-MWNTs were localized in PVDF, the shielding was mainly through reflection. Now by localizing the conducting inclusion and the magnetic lossy materials in PVDF and the dielectric materials in PC, an outstanding shielding effectiveness of ca. -37 dB was achieved where shielding was mainly through absorption (ca. 90%). Thus, this study clearly demonstrates that lightweight microwave absorbers can be designed using polymer blends as a tool

    Polymer-grafted multiwall carbon nanotubes functionalized by nitrene chemistry: effect on cooperativity and phase miscibility

    No full text
    The demixing of polystyrene (PS) and poly(vinyl methylether) (PVME) was systematically investigated in the presence of surface functionalized multiwall carbon nanotubes (MWNTs) by melt rheology. As PS-PVME blends are weakly interacting blends, the contribution of conformational entropy increases, resulting in thermo-rheological complexity wherein the concentration fluctuation persists even beyond the critical demixing temperature. These phenomenal changes were followed here in the presence of MWNTs with different surface functional groups. Polystyrene was synthesised by atom transfer radical polymerization and was immobilized onto carboxyl acid functionalized multiwall carbon nanotubes (COOH-MWNTs) via nitrene chemistry in order to improve the phase miscibility in PS-PVME blends. Interestingly, blends with 0.25 wt% polystyrene grafted multiwall carbon nanotubes (PS-g-MWNTs) delayed the spinodal decomposition temperature in the blends by similar to 33 degrees C with respect to both control blends and those with COOH-MWNTs. While the localization of COOH-MWNTs in PVME was explained from a thermodynamic point of view, the localization of PS-g-MWNTs was understood to result from favorable PS-PVME contact and the degree of surface coverage of PS on the surface of MWNTs. The length of the cooperative rearranging region (xi) decreased in presence of PS-g-MWNTs, suggesting confinement effects on large scale motions and enhanced interchain concentration fluctuation
    corecore