433 research outputs found
The structure of frontoparallel haptic space is task dependent
In three experiments, we investigated the structure of frontoparallel haptic space. In the first experiment, we asked blindfolded participants to rotate a matching bar so that it felt parallel to the reference bar, the bars could be at various positions in the frontoparallel plane. Large systematic errors were observed, in which orientations that were perceived to be parallel were not physically parallel. In two subsequent experiments, we investigated the origin of these errors. In Experiment 2, we asked participants to verbally report the orientation of haptically presented bars. In this task, participants made errors that were considerably smaller than those made in Experiment 1. In Experiment 3, we asked participants to set bars in a verbally instructed orientation, and they also made errors significantly smaller than those observed in Experiment 1. The data suggest that the errors in the matching task originate from the transfer of the reference orientation to the matching-bar position
Haptic curvature contrast in raised lines and solid shapes
It is known that our senses are influenced by contrast effects and aftereffects. For haptic perception, the curvature aftereffect has been studied in depth but little is known about curvature contrast. In this study we let observers explore two shapes simultaneously. The shape felt by the index finger could either be flat or convexly curved. The curvature at the thumb was varied to quantify the curvature of a subjectively flat shape. We found that when the index finger was presented with a convex shape, a flat shape at the thumb was also perceived to be convex. The effect is rather strong, on average 20% of the contrasting curvature. The contrast effect was present for both raised line stimuli and solid shapes. Movement measurements revealed that the curvature of the path taken by the metacarpus (part of the hand that connects the fingers) was approximately the average of the path curvatures taken by the thumb and index finger. A failure to correct for the movement of the hand could explain the contrast effect
Non-polar (11-20) InGaN quantum dots with short exciton lifetimes grown by metal-organic vapor phase epitaxy
We report on the optical characterization of non-polar a-plane InGaN quantum
dots (QDs) grown by metal-organic vapor phase epitaxy using a short nitrogen
anneal treatment at the growth temperature. Spatial and spectral mapping of
sub-surface QDs have been achieved by cathodoluminescence at 8 K.
Microphotoluminescence studies of the QDs reveal resolution limited sharp peaks
with typical linewidth of 1 meV at 4.2 K. Time-resolved photoluminescence
studies suggest the excitons in these QDs have a typical lifetime of 538 ps,
much shorter than that of the c-plane QDs, which is strong evidence of the
significant suppression of the internal electric fields.Comment: 4 figures, submitte
Keep an eye on your hands: on the role of visual mechanisms in processing of haptic space
The present paper reviews research on a haptic orientation processing. Central is a task in which a test bar has to be set parallel to a reference bar at another location. Introducing a delay between inspecting the reference bar and setting the test bar leads to a surprising improvement. Moreover, offering visual background information also elevates performance. Interestingly, (congenitally) blind individuals do not or to a weaker extent show the improvement with time, while in parallel to this, they appear to benefit less from spatial imagery processing. Together this strongly points to an important role for visual processing mechanisms in the perception of haptic inputs
Dislocation core structures in Si-doped GaN
Aberration-corrected scanning transmission electron microscopy was used to investigate the core structures of threading dislocations in plan-view geometry of GaN films with a range of Si-doping levels and dislocation densities ranging between (5 ± 1) × 108 and (10 ± 1) × 109 cm−2. All a-type (edge) dislocation core structures in all samples formed 5/7-atom ring core structures, whereas all (a + c)-type (mixed) dislocations formed either double 5/6-atom, dissociated 7/4/8/4/9-atom, or dissociated 7/4/8/4/8/4/9-atom core structures. This shows that Si-doping does not affect threading dislocation core structures in GaN. However, electron beam damage at 300 keV produces 4-atom ring structures for (a + c)-type cores in Si-doped GaN.This work was funded in part by the Cambridge Commonwealth trust, St. John's College, British Federation of Women Graduates and the EPSRC. M.A.M. acknowledges the support from the Royal Society through a University Research Fellowship. Additional support was provided by the EPSRC through the UK National Facility for Aberration-Corrected STEM (SuperSTEM).This is the author accepted manuscript. The final version is available from AIP via http://dx.doi.org/10.1063/1.493745
Treatment of developmental dyslexia: A review
Remarkably few research articles on the treatment of developmental dyslexia were published during the last 25 years. Some treatment research arose from the temporal processing theory, some from the phonological deficit hypothesis and some more from the balance model of learning to read and dyslexia. Within the framework of that model, this article reviews the aetiology of dyslexia sub-types, the neuropsychological rationale for treatment, the treatment techniques and the outcomes of treatment research. The possible mechanisms underlying the effects of treatment are discussed. © 2005 Informa UK Ltd All rights reserved
A COMPARISON OF CHOLINESTERASE DISTRIBUTION IN THE CEREBELLUM OF SEVERAL SPECIES *
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65142/1/j.1471-4159.1964.tb06717.x.pd
- …