52 research outputs found

    Comparative Functional Genomics Analysis of NNK Tobacco-Carcinogen Induced Lung Adenocarcinoma Development in Gprc5a-Knockout Mice

    Get PDF
    Background: Improved understanding of lung cancer development and progression, including insights from studies of animal models, are needed to combat this fatal disease. Previously, we found that mice with a knockout (KO) of G-protein coupled receptor 5A (Gprc5a) develop lung tumors after a long latent period (12 to 24 months). Methodology/Principal Findings: To determine whether a tobacco carcinogen will enhance tumorigenesis in this model, we administered 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) i.p. to 2-months old Gprc5a-KO mice and sacrificed groups (n = 5) of mice at 6, 9, 12, and 18 months later. Compared to control Gprc5a-KO mice, NNK-treated mice developed lung tumors at least 6 months earlier, exhibited 2- to 4-fold increased tumor incidence and multiplicity, and showed a dramatic increase in lesion size. A gene expression signature, NNK-ADC, of differentially expressed genes derived by transcriptome analysis of epithelial cell lines from normal lungs of Gprc5a-KO mice and from NNK-induced adenocarcinoma was highly similar to differential expression patterns observed between normal and tumorigenic human lung cells. The NNK-ADC expression signature also separated both mouse and human adenocarcinomas from adjacent normal lung tissues based on publicly available microarray datasets. A key feature of the signature, up-regulation of Ube2c, Mcm2, and Fen1, was validated in mouse normal lung and adenocarcinoma tissues and cells by immunohistochemistry and western blotting, respectively

    Heading Down the Wrong Pathway: on the Influence of Correlation within Gene Sets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Analysis of microarray experiments often involves testing for the overrepresentation of pre-defined sets of genes among lists of genes deemed individually significant. Most popular gene set testing methods assume the independence of genes within each set, an assumption that is seriously violated, as extensive correlation between genes is a well-documented phenomenon.</p> <p>Results</p> <p>We conducted a meta-analysis of over 200 datasets from the Gene Expression Omnibus in order to demonstrate the practical impact of strong gene correlation patterns that are highly consistent across experiments. We show that a common independence assumption-based gene set testing procedure produces very high false positive rates when applied to data sets for which treatment groups have been randomized, and that gene sets with high internal correlation are more likely to be declared significant. A reanalysis of the same datasets using an array resampling approach properly controls false positive rates, leading to more parsimonious and high-confidence gene set findings, which should facilitate pathway-based interpretation of the microarray data.</p> <p>Conclusions</p> <p>These findings call into question many of the gene set testing results in the literature and argue strongly for the adoption of resampling based gene set testing criteria in the peer reviewed biomedical literature.</p

    The Cerebral Microvasculature in Schizophrenia: A Laser Capture Microdissection Study

    Get PDF
    BACKGROUND: Previous studies of brain and peripheral tissues in schizophrenia patients have indicated impaired energy supply to the brain. A number of studies have also demonstrated dysfunction of the microvasculature in schizophrenia patients. Together these findings are consistent with a hypothesis of blood-brain barrier dysfunction in schizophrenia. In this study, we have investigated the cerebral vascular endothelium of schizophrenia patients at the level of transcriptomics. METHODOLOGY/PRINCIPAL FINDINGS: We used laser capture microdissection to isolate both microvascular endothelial cells and neurons from post mortem brain tissue from schizophrenia patients and healthy controls. RNA was isolated from these cell populations, amplified, and analysed using two independent microarray platforms, Affymetrix HG133plus2.0 GeneChips and CodeLink Whole Human Genome arrays. In the first instance, we used the dataset to compare the neuronal and endothelial data, in order to demonstrate that the predicted differences between cell types could be detected using this methodology. We then compared neuronal and endothelial data separately between schizophrenic subjects and controls. Analysis of the endothelial samples showed differences in gene expression between schizophrenics and controls which were reproducible in a second microarray platform. Functional profiling revealed that these changes were primarily found in genes relating to inflammatory processes. CONCLUSIONS/SIGNIFICANCE: This study provides preliminary evidence of molecular alterations of the cerebral microvasculature in schizophrenia patients, suggestive of a hypo-inflammatory state in this tissue type. Further investigation of the blood-brain barrier in schizophrenia is warranted

    A Meta-Analysis of Array-CGH Studies Implicates Antiviral Immunity Pathways in the Development of Hepatocellular Carcinoma

    Get PDF
    BACKGROUND: The development and progression of hepatocellular carcinoma (HCC) is significantly correlated to the accumulation of genomic alterations. Array-based comparative genomic hybridization (array CGH) has been applied to a wide range of tumors including HCCs for the genome-wide high resolution screening of DNA copy number changes. However, the relevant chromosomal variations that play a central role in the development of HCC still are not fully elucidated. METHODS: In present study, in order to further characterize the copy number alterations (CNAs) important to HCC development, we conducted a meta-analysis of four published independent array-CGH datasets including total 159 samples. RESULTS: Eighty five significant gains (frequency β‰₯ 25%) were mostly mapped to five broad chromosomal regions including 1q, 6p, 8q, 17q and 20p, as well as two narrow regions 5p15.33 and 9q34.2-34.3. Eighty eight significant losses (frequency β‰₯ 25%) were most frequently present in 4q, 6q, 8p, 9p, 13q, 14q, 16q, and 17p. Significant correlations existed between chromosomal aberrations either located on the same chromosome or the different chromosomes. HCCs with different etiologies largely exhibited surprisingly similar profiles of chromosomal aberrations with only a few exceptions. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the genes affected by these chromosomal aberrations were significantly enriched in 31 canonical pathways with the highest enrichment observed for antiviral immunity pathways. CONCLUSIONS: Taken together, our findings provide novel and important clues for the implications of antiviral immunity-related gene pathways in the pathogenesis and progression of HCC

    Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis

    Get PDF
    Background: Runt-related transcription factor 3 (RUNX3) is known as a tumor suppressor gene for gastric cancer and other cancers, this gene may be involved in the development of hepatocellular carcinoma (HCC). Methods: RUNX3 expression was analyzed by immunoblot and immunohistochemistry in HCC cells and tissues, respectively. Hep3B cells, lacking endogenous RUNX3, were introduced with RUNX3 constructs. Cell proliferation was measured using the MTT assay and apoptosis was evaluated using DAPI staining. Apoptosis signaling was assessed by immunoblot analysis. Results: RUNX3 protein expression was frequently inactivated in the HCC cell lines (91%) and tissues (90%). RUNX3 expression inhibited 90 +/- 8% of cell growth at 72 h in serum starved Hep3B cells. Forty-eight hour serum starvation-induced apoptosis and the percentage of apoptotic cells reached 31 +/- 4% and 4 +/- 1% in RUNX3-expressing Hep3B and control cells, respectively. Apoptotic activity was increased by Bim expression and caspase-3 and caspase-9 activation. Conclusion: RUNX3 expression enhanced serum starvation-induced apoptosis in HCC cell lines. RUNX3 is deleted or weakly expressed in HCC, which leads to tumorigenesis by escaping apoptosis

    Functional Interactions between Retinoblastoma and c-MYC in a Mouse Model of Hepatocellular Carcinoma

    Get PDF
    Inactivation of the RB tumor suppressor and activation of the MYC family of oncogenes are frequent events in a large spectrum of human cancers. Loss of RB function and MYC activation are thought to control both overlapping and distinct cellular processes during cell cycle progression. However, how these two major cancer genes functionally interact during tumorigenesis is still unclear. Here, we sought to test whether loss of RB function would affect cancer development in a mouse model of c-MYC-induced hepatocellular carcinoma (HCC), a deadly cancer type in which RB is frequently inactivated and c-MYC often activated. We found that RB inactivation has minimal effects on the cell cycle, cell death, and differentiation features of liver tumors driven by increased levels of c-MYC. However, combined loss of RB and activation of c-MYC led to an increase in polyploidy in mature hepatocytes before the development of tumors. There was a trend for decreased survival in double mutant animals compared to mice developing c-MYC-induced tumors. Thus, loss of RB function does not provide a proliferative advantage to c-MYC-expressing HCC cells but the RB and c-MYC pathways may cooperate to control the polyploidy of mature hepatocytes

    Hepatic stellate cells:central modulators of hepatic carcinogenesis

    Get PDF
    Hepatocellular carcinoma (HCC) represents the second most common cause of cancer-related death worldwide, and is increasing in incidence. Currently, our therapeutic repertoire for the treatment of HCC is severely limited, and therefore effective new therapies are urgently required. Recently, there has been increasing interest focusing on the cellular and molecular interactions between cancer cells and their microenvironment. HCC represents a unique opportunity to study the relationship between a diseased stroma and promotion of carcinogenesis, as 90Β % of HCCs arise in a cirrhotic liver. Hepatic stellate cells (HSC) are the major source of extracellular proteins during fibrogenesis, and may directly, or via secreted products, contribute to tumour initiation and progression. In this review we explore the complex cellular and molecular interplay between HSC biology and hepatocarcinogenesis. We focus on the molecular mechanisms by which HSC modulate HCC growth, immune cell evasion and angiogenesis. This is followed by a discussion of recent progress in the field in understanding the mechanistic crosstalk between HSC and HCC, and the pathways that are potentially amenable to therapeutic intervention. Furthermore, we summarise the exciting recent developments in strategies to target HSC specifically, and novel techniques to deliver pharmaceutical agents directly to HSC, potentially allowing tailored, cell-specific therapy for HCC
    • …
    corecore