5 research outputs found
Flowering Dogwoods under Fire: Responses of the Microbiome under Prescribed Burn Management
Prescribed fire is a critical management tool that influences forest physical structure and biological composition in the southeastern United States. Management via prescribed burning reduces fuel accumulation and the probability of wildfire, recycles nutrients to soil, and minimizes the spread of insect pests and diseases. How prescribed fire can effect the microbiome of regionally native Cornus florida, which is economically and ecologically valued, is not well understood. The objective of this study was to evaluate shifts in fungal and bacterial communities of C. florida in five different habitats that occur following a prescribed fire event. Bacterial and fungal communities across five niches from 20 C. florida trees were characterized using 16S and ITS2 rRNA gene analyses. Prior to burn application, the majority of bacterial sequences from soil and bark habitats of C. florida were identified as Proteobacteria, Acidobacteria, and Actinobacteria phyla. Additionally, the observed species richness in burned and unburned plot habitats did not differ before the application of fire treatment. Six-month post fire analyses are expected to reveal how the C. florida microbiome has responded to fire. Results will provide novel information regarding microbial community members that are better adapted to during- and post-fire conditions and can help predict the consequences of unplanned fire events that may introduce long-term health effects to plant hosts like C. florida
A haplotype-resolved chromosome-scale genome for Quercus rubra L. provides insights into the genetics of adaptive traits for red oak species
Northern red oak (Quercus rubra L.) is an ecologically and economically important forest tree native to North America. We present a chromosome-scale genome of Q. rubra generated by the combination of PacBio sequences and chromatin conformation capture (Hi-C) scaffolding. This is the first reference genome from the red oak clade (section Lobatae). The Q. rubra assembly spans 739 Mb with 95.27% of the genome in 12 chromosomes and 33,333 protein-coding genes. Comparisons to the genomes of Quercus lobata and Quercus mongolica revealed high collinearity, with intrachromosomal structural variants present. Orthologous gene family analysis with other tree species revealed that gene families associated with defense response were expanding and contracting simultaneously across the Q. rubra genome. Quercus rubra had the most CC-NBS-LRR and TIR-NBS-LRR resistance genes out of the 9 species analyzed. Terpene synthase gene family comparisons further reveal tandem gene duplications in TPS-b subfamily, similar to Quercus robur. Phylogenetic analysis also identified 4 subfamilies of the IGT/LAZY gene family in Q. rubra important for plant structure. Single major QTL regions were identified for vegetative bud break and marcescence, which contain candidate genes for further research, including a putative ortholog of the circadian clock constituent cryptochrome (CRY2) and 8 tandemly duplicated genes for serine protease inhibitors, respectively. Genome–environment associations across natural populations identified candidate abiotic stress tolerance genes and predicted performance in a common garden. This high-quality red oak genome represents an essential resource to the oak genomic community, which will expedite comparative genomics and biological studies in Quercus species
Signatures of prescribed fire in the microbial communities of Cornus florida are largely undetectable five months post-fire
Prescribed burn is a management tool that influences the physical structure and composition of forest plant communities and their associated microorganisms. Plant-associated microorganisms aid in host plant disease tolerance and increase nutrient availability. The effects of prescribed burn on microorganisms associated with native ecologically and economically important tree species, such as Cornus florida L. (flowering dogwood), are not well understood, particularly in aboveground plant tissues (e.g., leaf, stem, and bark tissues). The objective of this study was to use 16S rRNA gene and ITS2 region sequencing to evaluate changes in bacterial and fungal communities of five different flowering dogwood-associated niches (soil, roots, bark, stem, and leaves) five months following a prescribed burn treatment. The alpha- and beta-diversity of root bacterial/archaeal communities differed significantly between prescribed burn and unburned control-treated trees. In these bacterial/archaeal root communities, we also detected a significantly higher relative abundance of sequences identified as Acidothermaceae, a family of thermophilic bacteria. No significant differences were detected between prescribed burn-treated and unburned control trees in bulk soils or bark, stem, or leaf tissues. The findings of our study suggest that prescribed burn does not significantly alter the aboveground plant-associated microbial communities of flowering dogwood trees five months following the prescribed burn application. Further studies are required to better understand the short- and long-term effects of prescribed burns on the microbial communities of forest trees
A haplotype-resolved chromosome-scale genome for Quercus rubra L. provides insights into the genetics of adaptive traits for red oak species
Abstract Northern red oak (Quercus rubra L.) is an ecologically and economically important forest tree native to North America. We present a chromosome-scale genome of Q. rubra generated by the combination of PacBio sequences and chromatin conformation capture (Hi-C) scaffolding. This is the first reference genome from the red oak clade (section Lobatae). The Q. rubra assembly spans 739 Mb with 95.27% of the genome in 12 chromosomes and 33,333 protein-coding genes. Comparisons to the genomes of Q. lobata and Q. mongolica revealed high collinearity, with intrachromosomal structural variants present. Orthologous gene family analysis with other tree species revealed that gene families associated with defense response were expanding and contracting simultaneously across the Q. rubra genome. Quercus rubra had the most CC-NBS-LRR and TIR-NBS-LRR resistance genes out of the nine species analyzed. Terpene synthase gene family comparisons further reveal tandem gene duplications in TPS-b subfamily, similar to Q. robur. Phylogenetic analysis also identified four subfamilies of the IGT/LAZY gene family in Q. rubra important for plant structure. Single major QTL regions were identified for vegetative bud break and marcescence which contain candidate genes for further research, including a putative ortholog of the circadian clock constituent cryptochrome (CRY2) and eight tandemly duplicated genes for serine protease inhibitors, respectively. Genome-environment associations across natural populations identified candidate abiotic stress tolerance genes and predicted performance in a common garden. This high-quality red oak genome represents an essential resource to the oak genomics community which will expedite comparative genomics and biological studies in Quercus species
Will “Tall Oaks from Little Acorns Grow”? White Oak (<i>Quercus alba</i>) Biology in the Anthropocene
Quercus alba L., also known as white oak, eastern white oak, or American white oak, is a quintessential North American species within the white oak section (Quercus) of the genus Quercus, subgenus Quercus. This species plays a vital role as a keystone species in eastern North American forests and plays a significant role in local and regional economies. As a long-lived woody perennial covering an extensive natural range, Q. alba’s biology is shaped by a myriad of adaptations accumulated throughout its natural history. Populations of Q. alba are crucial repositories of genetic, genomic, and evolutionary insights, capturing the essence of successful historical adaptations and ongoing responses to contemporary environmental challenges in the Anthropocene. This intersection offers an exceptional opportunity to integrate genomic knowledge with the discovery of climate-relevant traits, advancing tree improvement, forest ecology, and forest management strategies. This review provides a comprehensive examination of the current understanding of Q. alba’s biology, considering past, present, and future research perspectives. It encompasses aspects such as distribution, phylogeny, population structure, key adaptive traits to cyclical environmental conditions (including water use, reproduction, propagation, and growth), as well as the species’ resilience to biotic and abiotic stressors. Additionally, this review highlights the state-of-the-art research resources available for the Quercus genus, including Q. alba, showcasing developments in genetics, genomics, biotechnology, and phenomics tools. This overview lays the groundwork for exploring and elucidating the principles of longevity in plants, positioning Q. alba as an emerging model tree species, ideally suited for investigating the biology of climate-relevant traits