2 research outputs found

    Changes in orographic precipitation patterns caused by a shift from snow to rain

    Get PDF
    Climate warming will likely cause a shift from snow to rain in midlatitude mountains. Because rain falls faster than snow, it is not advected as far by prevailing winds before reaching the ground. A shift in precipitation phase thus may alter precipitation patterns. Using the Weather Research and Forecasting (WRF) regional climate model at 27-9-3 km resolutions over the California Sierra Nevada, we conducted an idealized experiment consisting of a present climate control run and two additional simulations in which (a) fall speed for snow is similar to rain and (b) all precipitation is constrained to fall as liquid. Rather than simulating future climates directly, these perturbation experiments allow us to test the potential impacts of changing precipitation phase in isolation from other factors such as variable large-scale atmospheric circulation. Relative to the control, both perturbations result in a rain shadow deepened by ̃30-60%, with increased focusing of precipitation on the western Sierra Nevada slopes best resolved at ≤9 km resolutions. Our results suggest that altered precipitation phase associated with climate change will likely affect spatial distributions of water resources, floods, and landslides in the Sierra Nevada and similar midlatitude mountain ranges. Citation: Pavelsky, T. M., S. Sobolowski, S. B. Kapnick, and J. B. Barnes (2012), Changes in orographic precipitation patterns caused by a shift from snow to rain, Geophys. Res. Lett., 39, L18706,

    A New Estimate of North American Mountain Snow Accumulation From Regional Climate Model Simulations

    Get PDF
    Despite the importance of mountain snowpack to understanding the water and energy cycles in North America's montane regions, no reliable mountain snow climatology exists for the entire continent. We present a new estimate of mountain snow water equivalent (SWE) for North America from regional climate model simulations. Climatological peak SWE in North America mountains is 1,006 km3, 2.94 times larger than previous estimates from reanalyses. By combining this mountain SWE value with the best available global product in nonmountain areas, we estimate peak North America SWE of 1,684 km3, 55% greater than previous estimates. In our simulations, the date of maximum SWE varies widely by mountain range, from early March to mid-April. Though mountains comprise 24% of the continent's land area, we estimate that they contain ~60% of North American SWE. This new estimate is a suitable benchmark for continental- and global-scale water and energy budget studies
    corecore