26,474 research outputs found

    Gradient Catastrophe and Fermi Edge Resonances in Fermi Gas

    Full text link
    A smooth spatial disturbance of the Fermi surface in a Fermi gas inevitably becomes sharp. This phenomenon, called {\it the gradient catastrophe}, causes the breakdown of a Fermi sea to disconnected parts with multiple Fermi points. We study how the gradient catastrophe effects probing the Fermi system via a Fermi edge singularity measurement. We show that the gradient catastrophe transforms the single-peaked Fermi-edge singularity of the tunneling (or absorption) spectrum to a set of multiple asymmetric singular resonances. Also we gave a mathematical formulation of FES as a matrix Riemann-Hilbert problem

    Progress in Electroweak Baryogenesis

    Full text link
    Recent work on generating the excess of matter over antimatter in the early universe during the electroweak phase transition is reviewed.Comment: 50 pages (figures on request), uses harvmac (table of contents correct for "l" format), UCSD-93-2,BU-HEP-93-

    Lattice study of trapped fermions at unitarity

    Get PDF
    We present a lattice study of up to N=20 unitary fermions confined to a harmonic trap. Our preliminary results show better than 1% agreement with high precision solutions to the many-body Schrodinger equation for up to N=6. We are able to make predictions for larger N which were inaccessible by the Hamiltonian approach due to computational limitations. Harmonic traps are used experimentally to study cold atoms tuned to a Feshbach resonance. We show that they also provide certain benefits to numerical studies of many-body correlators on the lattice. In particular, we anticipate that the methods described here could be used for studying nuclear physics.Comment: 7 pages, 5 figures, presented at the XXVIII International Symposium on Lattice Field Theory (Lattice 2010), Villasimius, Italy, June 14-19 201

    Lattice calculation for unitary fermions in a finite box

    Get PDF
    A fundamental constant in systems of unitary fermions is the so-called Bertsch parameter, the ratio of the ground state energy for spin paired unitary fermions to that for free fermions at the same density. I discuss how we computed this parameter as well as the pairing gap using a recently developed lattice construction for unitary fermions, by measuring correlation functions for up to 38 fermions in a finite box. Our calculation illustrates interesting issues facing the study of many-body states on the lattice, which may eventually be confronted in QCD calculations as well.Comment: 7 pages, 6 figures, The XXVIII International Symposium on Lattice Field Theory, Lattice2010, June 14-19, 2010, Villasimius, Ital

    A lattice theory for low energy fermions at finite chemical potential

    Full text link
    We construct a lattice theory describing a system of interacting nonrelativistic spin s=1/2 fermions at nonzero chemical potential. The theory is applicable whenever the interparticle separation is large compared to the range of the two-body potential, and does not suffer from a sign problem. In particular, the theory could be useful in studying the thermodynamic limit of fermion systems for which the scattering length is much larger than the interparticle spacing, with applications to realistic atomic systems and dilute neutron gases.Comment: Revised introduction, several typos fixed. Conforms to version accepted for publication in Phys. Rev. Let

    Exotic Axions

    Full text link
    We show that axion phenomenology may be significantly different than conventionally assumed in theories which exhibit late phase transitions (below the QCD scale). In such theories one can find multiple pseudoscalars with axion-like couplings to matter, including a string scale axion, whose decay constant far exceeds the conventional cosmological bound. Such theories have several dark matter candidates.Comment: 5 pages, 1 figure, References adde
    • …
    corecore