32,518 research outputs found

    Progress in Electroweak Baryogenesis

    Full text link
    Recent work on generating the excess of matter over antimatter in the early universe during the electroweak phase transition is reviewed.Comment: 50 pages (figures on request), uses harvmac (table of contents correct for "l" format), UCSD-93-2,BU-HEP-93-

    CP Violation from a Higher Dimensional Model

    Get PDF
    It is shown that Randall-Sundrum model has the EDM term which violates the CP-symmetry. The comparison with the case of Kaluza-Klein theory is done. The chiral property, localization, anomaly phenomena are examined. We evaluate the bulk quantum effect using the method of the induced effective action. This is a new origin of the CP-violation.Comment: 15pages, Proc. of Int. Workshop on "Neutrino Masses and Mixings"(Dec.17-19,2006,Univ.of Shizuoka,Japan

    Conformality Lost

    Full text link
    We consider zero-temperature transitions from conformal to non-conformal phases in quantum theories. We argue that there are three generic mechanisms for the loss of conformality in any number of dimensions: (i) fixed point goes to zero coupling, (ii) fixed point runs off to infinite coupling, or (iii) an IR fixed point annihilates with a UV fixed point and they both disappear into the complex plane. We give both relativistic and non-relativistic examples of the last case in various dimensions and show that the critical behavior of the mass gap behaves similarly to the correlation length in the finite temperature Berezinskii-Kosterlitz-Thouless (BKT) phase transition in two dimensions, xi ~ exp(c/|T-T_c|^{1/2}). We speculate that the chiral phase transition in QCD at large number of fermion flavors belongs to this universality class, and attempt to identify the UV fixed point that annihilates with the Banks-Zaks fixed point at the lower end of the conformal window.Comment: 30 pages, 6 figures; v2: typos fixed, references adde

    New Experimental Constraints on Non-Newtonian Forces below 100 microns

    Get PDF
    We have searched for large deviations from Newtonian gravity by means of a microcantilever-based Cavendish-style experiment. Our data eliminate from consideration mechanisms of deviation that posit strengths ~10^4 times Newtonian gravity at length scales of 20 microns. This measurement is 3 orders of magnitude more sensitive than others that provide constraints at similar length scales.Comment: 4 pages, 4 figure

    Lepton flavour violation in The Little Higgs model

    Get PDF
    Little Higgs models with T-parity have a new source of lepton flavour violation. In this paper we consider the anomalous magnetic moment of the muon \gmtwo and the lepton flavour violating decays \mutoeg and \tautomug in Little Higgs model with T-parity \cite{Goyal:2006vq}. Our results shows that present experimental constraints of \mutoeg is much more useful to constrain the new sources of flavour violation which are present in T-parity models.Comment: LaTeX file with 13 eps figures (included

    Recombinant Collagen Engineered to Bind to Discoidin Domain Receptors Functions as a Receptor Inhibitor

    Get PDF
    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities

    Scar Intensity Statistics in the Position Representation

    Full text link
    We obtain general predictions for the distribution of wave function intensities in position space on the periodic orbits of chaotic ballistic systems. The expressions depend on effective system size N, instability exponent lambda of the periodic orbit, and proximity to a focal point of the orbit. Limiting expressions are obtained that include the asymptotic probability distribution of rare high-intensity events and a perturbative formula valid in the limit of weak scarring. For finite system sizes, a single scaling variable lambda N describes deviations from the semiclassical N -> infinity limit.Comment: To appear in Phys. Rev. E, 10 pages, including 4 figure

    Localization of Eigenfunctions in the Stadium Billiard

    Full text link
    We present a systematic survey of scarring and symmetry effects in the stadium billiard. The localization of individual eigenfunctions in Husimi phase space is studied first, and it is demonstrated that on average there is more localization than can be accounted for on the basis of random-matrix theory, even after removal of bouncing-ball states and visible scars. A major point of the paper is that symmetry considerations, including parity and time-reversal symmetries, enter to influence the total amount of localization. The properties of the local density of states spectrum are also investigated, as a function of phase space location. Aside from the bouncing-ball region of phase space, excess localization of the spectrum is found on short periodic orbits and along certain symmetry-related lines; the origin of all these sources of localization is discussed quantitatively and comparison is made with analytical predictions. Scarring is observed to be present in all the energy ranges considered. In light of these results the excess localization in individual eigenstates is interpreted as being primarily due to symmetry effects; another source of excess localization, scarring by multiple unstable periodic orbits, is smaller by a factor of â„Ź\sqrt{\hbar}.Comment: 31 pages, including 10 figure
    • …
    corecore