1,065 research outputs found

    Little Higgses from an Antisymmetric Condensate

    Get PDF
    We construct an SU(6)/Sp(6) non-linear sigma model in which the Higgses arise as pseudo-Goldstone bosons. There are two Higgs doublets whose masses have no one-loop quadratic sensitivity to the cutoff of the effective theory, which can be at around 10 TeV. The Higgs potential is generated by gauge and Yukawa interactions, and is distinctly different from that of the minimal supersymmetric standard model. At the TeV scale, the new bosonic degrees of freedom are a single neutral complex scalar and a second copy of SU(2)xU(1) gauge bosons. Additional vector-like pairs of colored fermions are also present.Comment: 13 page

    Precision Electroweak Observables in the Minimal Moose Little Higgs Model

    Full text link
    Little Higgs theories, in which the Higgs particle is realized as the pseudo-Goldstone boson of an approximate global chiral symmetry have generated much interest as possible alternatives to weak scale supersymmetry. In this paper we analyze precision electroweak observables in the Minimal Moose model and find that in order to be consistent with current experimental bounds, the gauge structure of this theory needs to be modified. We then look for viable regions of parameter space in the modified theory by calculating the various contributions to the S and T parameters.Comment: v2: 17 pages, 9 figures. Typeset in JHEP style. Added a references and two figures showing parameter space for each of two reference points. Corrected typo

    Vector field localization and negative tension branes

    Full text link
    It is shown that negative tension branes in higher dimensions may lead to an effective lower dimensional theory where the gauge-invariant vector fields associated with the fluctuations of the metric are always massless and localized on the brane. Explicit five-dimensional examples of this phenomenon are provided. Furthermore, it is shown that higher dimensional gauge fields can also be localized on these configurations with the zero mode separated from the massive tower by a gap.Comment: 16 pages, LaTeX style; to appear in Phys. Rev.

    RS1, Custodial Isospin and Precision Tests

    Full text link
    We study precision electroweak constraints within a RS1 model with gauge fields and fermions in the bulk. The electroweak gauge symmetry is enhanced to SU(2)_L \times SU(2)_R \times U(1)_{B-L}, thereby providing a custodial isospin symmetry sufficient to suppress excessive contributions to the T parameter. We then construct complete models, complying with all electroweak constraints, for solving the hierarchy problem, without supersymmetry or large hierarchies in the fundamental couplings. Using the AdS/CFT correspondence our models can be interpreted as dual to a strongly coupled conformal Higgs sector with global custodial symmetry, gauge and fermionic matter being fundamental fields external to the CFT. This scenario has interesting collider signals, distinct from other RS models in the literature.Comment: 32 pages, 6 figures, latex2e, minor changes, references adde

    Big Corrections from a Little Higgs

    Get PDF
    We calculate the tree-level expressions for the electroweak precision observables in the SU(5)/SO(5) littlest Higgs model. The source for these corrections are the exchange of heavy gauge bosons, explicit corrections due to non-linear sigma-model dynamics and a triplet Higgs VEV. Weak isospin violating contributions are present because there is no custodial SU(2) global symmetry. The bulk of these weak isospin violating corrections arise from heavy gauge boson exchange while a smaller contribution comes from the triplet Higgs VEV. A global fit is performed to the experimental data and we find that throughout the parameter space the symmetry breaking scale is bounded by f > 4 TeV at 95% C.L. Stronger bounds on f are found for generic choices of the high energy gauge couplings. We find that even in the best case scenario one would need fine tuning of less than a percent to get a Higgs mass as light as 200 GeV.Comment: 20 pages, 5 figures included, typos fixed, comments on the effects of extra vector-like heavy fermions adde

    Clustering transitions in vibro-fluidized magnetized granular materials

    Full text link
    We study the effects of long range interactions on the phases observed in cohesive granular materials. At high vibration amplitudes, a gas of magnetized particles is observed with velocity distributions similar to non-magnetized particles. Below a transition temperature compact clusters are observed to form and coexist with single particles. The cluster growth rate is consistent with a classical nucleation process. However, the temperature of the particles in the clusters is significantly lower than the surrounding gas, indicating a breakdown of equipartition. If the system is quenched to low temperatures, a meta-stable network of connected chains self-assemble due to the anisotropic nature of magnetic interactions between particles.Comment: 4 pages, 5 figure

    Little Hierarchy, Little Higgses, and a Little Symmetry

    Full text link
    Little Higgs theories are an attempt to address the little hierarchy problem, i.e., the tension between the naturalness of the electroweak scale and the precision measurements showing no evidence for new physics up to 5-10 TeV. In little Higgs theories, the Higgs mass-squareds are protected to the one-loop order from the quadratic divergence. This allows the cutoff to be raised up to \~10 TeV, beyond the scales probed by the precision data. However, strong constraints can still arise from the contributions of the new TeV scale particles and hence re-introduces the fine-tuning problem. In this paper we show that a new symmetry, denoted as T-parity, under which all heavy gauge bosons and scalar triplets are odd, can remove all the tree-level contributions to the electroweak observables and therefore makes the little Higgs theories completely natural. The T-parity can be manifestly implemented in a majority of little Higgs models by following the most general construction of the low energy effective theory a la Callan, Coleman, Wess and Zumino. In particular, we discuss in detail how to implement the T-parity in the littlest Higgs model based on SU(5)/SO(5). The symmetry breaking scale f can be even lower than 500 GeV if the contributions from the unknown UV physics at the cutoff are somewhat small. The existence of TT-parity has drastic impacts on the phenomenology of the little Higgs theories. The T-odd particles need to be pair-produced and will cascade down to the lightest T-odd particle (LTP) which is stable. A neutral LTP gives rise to missing energy signals at the colliders which can mimic supersymmetry. It can also serve as a good dark matter candidate.Comment: 20 pages, 2 figures, RevTeX; v2: Yukawa sector in the SU(5)/SO(5) model slightly modified. Also added comments on the Dirac mass term for the fermionic doublet partner; v3: clarifying comments on the modified Yukawa sector. version to appear on JHE

    Conformality or confinement: (IR)relevance of topological excitations

    Full text link
    We study aspects of the conformality to confinement transition for non-supersymmetric Yang-Mills theories with fermions in arbitrary chiral or vectorlike representations. We use the presence or absence of mass gap for gauge fluctuations as an identifier of the infrared behavior. Present-day understanding does not allow the mass gap for gauge fluctuations to be computed on R*4. However, recent progress allows its non-perturbative computation on R*3xS*1 by using either the twisted partition function or deformation theory, for a range of S*1 sizes depending on the theory. For small number of fermions, Nf, we show that the mass gap increases with increasing radius, due to the non-dilution of monopoles and bions, the topological excitations relevant for confinement on R*3xS*1. For sufficiently large Nf, we show that the mass gap decreases with increasing radius. In a class of theories, we claim that the decompactification limit can be taken while remaining within the region of validity of semi-classical techniques, giving the first examples of semiclassically solvable Yang-Mills theories at any size S*1. For general non-supersymmetric vectorlike or chiral theories, we conjecture that the change in the behavior of the mass gap on R*3xS*1 as a function of the radius occurs near the lower boundary of the conformal window and give non-perturbative estimates of its value. For vectorlike theories, we compare our estimates of the conformal window with existing lattice results, truncations of the Schwinger-Dyson equations, NSVZ beta function-inspired estimates, and degree of freedom counting criteria. For multi-generation chiral gauge theories, to the best of our knowledge, our estimates of the conformal window are the only known ones.Comment: 40 pages, 3 figures; modified various comments, reference adde
    • …
    corecore