4 research outputs found

    Emerging role of circulating tumor cells in immunotherapy.

    Full text link
    Over the last few years, immunotherapy, in particular, immune checkpoint inhibitor therapy, has revolutionized the treatment of several types of cancer. At the same time, the uptake in clinical oncology has been slow owing to the high cost of treatment, associated toxicity profiles and variability of the response to treatment between patients. In response, personalized approaches based on predictive biomarkers have emerged as new tools for patient stratification to achieve effective immunotherapy. Recently, the enumeration and molecular analysis of circulating tumor cells (CTCs) have been highlighted as prognostic biomarkers for the management of cancer patients during chemotherapy and for targeted therapy in a personalized manner. The expression of immune checkpoints on CTCs has been reported in a number of solid tumor types and has provided new insight into cancer immunotherapy management. In this review, we discuss recent advances in the identification of immune checkpoints using CTCs and shed light on the potential applications of CTCs towards the identification of predictive biomarkers for immunotherapy

    Rapid and label-free isolation of tumour cells from the urine of patients with localised prostate cancer using inertial microfluidics

    Full text link
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. During the last decade, isolation of circulating tumour cells via blood liquid biopsy of prostate cancer (PCa) has attracted significant attention as an alternative, or substitute, to conventional diagnostic tests. However, it was previously determined that localised forms of PCa shed a small number of cancer cells into the bloodstream, and a large volume of blood is required just for a single test, which is impractical. To address this issue, urine has been used as an alternative to blood for liquid biopsy as a truly non-invasive, patient-friendly test. To this end, we developed a spiral microfluidic chip capable of isolating PCa cells from the urine of PCa patients. Potential clinical utility of the chip was demonstrated using anti-Glypican-1 (GPC-1) antibody as a model of the primary antibody in immunofluorescent assay for identification and detection of the collected tumour cells. The microchannel device was first evaluated using DU-145 cells in a diluted Dulbecco’s phosphate-buffered saline sample, where it demonstrated >85 (±6) % efficiency. The microchannel proved to be functional in at least 79% of cases for capturing GPC1+ putative tumour cells from the urine of patients with localised PCa. More importantly, a correlation was found between the amount of the captured GPC1+ cells and crucial diagnostic and prognostic parameter of localised PCa—Gleason score. Thus, the technique demonstrated promise for further assessment of its diagnostic value in PCa detection, diagnosis, and prognosis

    Liquid Biopsy in Diagnosis and Prognosis of Non-Metastatic Prostate Cancer

    No full text
    Currently, sensitive and specific methods for the detection and prognosis of early stage PCa are lacking. To establish the diagnosis and further identify an appropriate treatment strategy, prostate specific antigen (PSA) blood test followed by tissue biopsy have to be performed. The combination of tests is justified by the lack of a highly sensitive, specific, and safe single test. Tissue biopsy is specific but invasive and may have severe side effects, and therefore is inappropriate for screening of the disease. At the same time, the PSA blood test, which is conventionally used for PCa screening, has low specificity and may be elevated in the case of noncancerous prostate tumors and inflammatory conditions, including benign prostatic hyperplasia and prostatitis. Thus, diverse techniques of liquid biopsy have been investigated to supplement or replace the existing tests of prostate cancer early diagnosis and prognostics. Here, we provide a review on the advances in diagnosis and prognostics of non-metastatic prostate cancer by means of various biomarkers extracted via liquid biopsy, including circulating tumor cells, exosomal miRNAs, and circulating DNAs

    Isolation of Circulating Tumor Cells from Seminal Fluid of Patients with Prostate Cancer Using Inertial Microfluidics

    No full text
    Prostate cancer (PCa) diagnosis is primarily based on prostate-specific antigen (PSA) testing and prostate tissue biopsies. However, PSA testing has relatively low specificity, while tissue biopsies are highly invasive and have relatively low sensitivity at early stages of PCa. As an alternative, we developed a technique of liquid biopsy, based on isolation of circulating tumor cells (CTCs) from seminal fluid (SF). The recovery of PCa cells from SF was demonstrated using PCa cell lines, achieving an efficiency and throughput as high as 89% (±3.8%) and 1.7 mL min−1, respectively, while 99% (±0.7%) of sperm cells were disposed of. The introduced approach was further tested in a clinical setting by collecting and processing SF samples of PCa patients. The yield of isolated CTCs measured as high as 613 cells per SF sample in comparison with that of 6 cells from SF of healthy donors, holding significant promise for PCa diagnosis. The correlation analysis of the isolated CTC numbers with the standard prognostic parameters such as Gleason score and PSA serum level showed correlation coefficient values at 0.40 and 0.73, respectively. Taken together, our results show promise in the developed liquid biopsy technique to augment the existing diagnosis and prognosis of PCa
    corecore