73 research outputs found

    PDE4 and mAKAPβ are nodal organizers of β2-ARs nuclear PKA signalling in cardiac myocytes

    Get PDF
    International audienceAims: β1- and β2-adrenergic receptors (β-ARs) produce different acute contractile effects on the heart partly because they impact on different cytosolic pools of cAMP-dependent protein kinase (PKA). They also exert different effects on gene expression but the underlying mechanisms remain unknown. The aim of this study was to understand the mechanisms by which β1- and β2-ARs regulate nuclear PKA activity in cardiomyocytes.Methods and results: We used cytoplasmic and nuclear targeted biosensors to examine cAMP signals and PKA activity in adult rat ventricular myocytes upon selective β1- or β2-ARs stimulation. Both β1- and β2-AR stimulation increased cAMP and activated PKA in the cytoplasm. Although the two receptors also increased cAMP in the nucleus, only β1-ARs increased nuclear PKA activity and up-regulated the PKA target gene and pro-apoptotic factor, inducible cAMP early repressor (ICER). Inhibition of phosphodiesterase (PDE)4, but not Gi, PDE3, GRK2 nor caveolae disruption disclosed nuclear PKA activation and ICER induction by β2-ARs. Both nuclear and cytoplasmic PKI prevented nuclear PKA activation and ICER induction by β1-ARs, indicating that PKA activation outside the nucleus is required for subsequent nuclear PKA activation and ICER mRNA expression. Cytoplasmic PKI also blocked ICER induction by β2-AR stimulation (with concomitant PDE4 inhibition). However, in this case nuclear PKI decreased ICER up-regulation by only 30%, indicating that other mechanisms are involved. Down-regulation of mAKAPβ partially inhibited nuclear PKA activation upon β1-AR stimulation, and drastically decreased nuclear PKA activation upon β2-AR stimulation in the presence of PDE4 inhibition.Conclusions: β1- and β2-ARs differentially regulate nuclear PKA activity and ICER expression in cardiomyocytes. PDE4 insulates a mAKAPβ-targeted PKA pool at the nuclear envelope that prevents nuclear PKA activation upon β2-AR stimulation

    A-kinase anchoring proteins: scaffolding proteins in the heart.

    No full text
    The pleiotropic cyclic nucleotide cAMP is the primary second messenger responsible for autonomic regulation of cardiac inotropy, chronotropy, and lusitropy. Under conditions of prolonged catecholaminergic stimulation, cAMP also contributes to the induction of both cardiac myocyte hypertrophy and apoptosis. The formation of localized, multiprotein complexes that contain different combinations of cAMP effectors and regulatory enzymes provides the architectural infrastructure for the specialization of the cAMP signaling network. Scaffolds that bind protein kinase A are called "A-kinase anchoring proteins" (AKAPs). In this review, we discuss recent advances in our understanding of how PKA is compartmentalized within the cardiac myocyte by AKAPs and how AKAP complexes modulate cardiac function in both health and disease

    Dooryard. Making it in Maine: Nothin\u27 But a Gi Thing

    No full text
    The article features Pete Robert\u27s Farmington-based sports apparel manufacturing business, OriginUSA. [images

    A-kinase anchoring proteins: temporal and spatial regulation of intracellular signal transduction in the cardiovascular system

    No full text
    The prototypical intracellular second messenger cAMP is locally controlled by multimolecular protein complexes organized by A-kinase anchoring proteins (AKAPs). AKAPs serve as scaffolds for different sets of cAMP-metabolizing enzymes that control cAMP gradients and regulate cellular responses. In addition to adenylyl cyclases and phosphodiesterases, AKAPs bind signaling enzymes and ion channels that are important regulators of cardiac contractility and pathophysiological myocyte remodeling and hypertrophy. Compartmentation increases the local concentration of cAMP signaling components, providing faster, higher fidelity regulation of cellular processes. This review series highlights the contribution of AKAPs in the heart as scaffold proteins integrating protein kinases, phosphatases and other effector molecules involved in cAMP-dependent signaling

    The cardiac enigma: current conundrums in heart failure research [version 1; referees: 3 approved]

    No full text
    The prevalence of heart failure is expected to increase almost 50% in the next 15 years because of aging of the general population, an increased frequency of comorbidities, and an improved survival following cardiac events. Conventional treatments for heart failure have remained largely static over the past 20 years, illustrating the pressing need for the discovery of novel therapeutic agents for this patient population. Given the heterogeneous nature of heart failure, it is important to specifically define the cellular mechanisms in the heart that drive the patient’s symptoms, particularly when considering new treatment strategies. This report highlights the latest research efforts, as well as the possible pitfalls, in cardiac disease translational research and discusses future questions and considerations needed to advance the development of new heart failure therapies. In particular, we discuss cardiac remodeling and the translation of animal work to humans and how advancements in our understanding of these concepts relative to disease are central to new discoveries that can improve cardiovascular health

    Signalosomes as therapeutic targets

    No full text
    Cardiac hypertrophy is the predominant compensatory response of the heart to a wide variety of biomechanical stressors, including exercise, hypertension, myocardial infarction, intrinsic cardiomyopathy or congenital heart disease. Although cardiac hypertrophy can maintain cardiac output in response to elevated wall stress, sustained cardiac hypertrophy is often accompanied by maladaptive remodeling which can ultimately lead to heart failure. Cultured cardiac myocytes, transgenic and knock-out animal models, and pharmacological studies have not only revealed key molecules involved in hypertrophic signaling, but have also highlighted the redundancy in the hypertrophic signaling cascade. Currently, the majority of existing therapies for inhibition of pathologic cardiac hypertrophy and heart failure target molecules on the surface of cardiac myocytes, such as G-protein coupled receptors (GPCRs) and ion channels. Because these molecules are upstream of multiple intracellular signaling pathways, however, current therapy is often accompanied by significant off-target effects and toxicity. More recently, research has focused on identifying the intracellular effectors of these signaling cascades in the hope that more selective drugs may be rationally designed for therapeutic intervention. Within the cardiac myocyte, the formation of discrete multimolecular complexes, or ‘signalosomes’, is an important mechanism for increasing the specificity and efficiency of hypertrophic signal transduction. In response to extracellular stimuli, these signalosomes can alter gene and protein expression, cell size, and chamber remodeling, such as in the case of the signalosomes formed by the mAKAPβ and AKAP-lbc scaffold proteins. A better understanding of the basic molecular mechanisms regulating the compartmentation and scaffolding of signaling molecules could lead to the development of new clinical tools that may prevent the development of heart failure and minimize negative impacts on physiological processes

    AKAPs: The architectural underpinnings of local cAMP signaling

    No full text
    The cAMP-dependent protein kinase A (PKA) is targeted to specific compartments in the cardiac myocyte by A-kinase anchoring proteins (AKAPs), a diverse set of scaffold proteins that have been implicated in the regulation of excitation–contraction coupling and cardiac remodeling. AKAPs bind not only PKA, but also a large variety of structural and signaling molecules. In this review, we discuss the basic concepts underlying compartmentation of cAMP and PKA signaling, as well as a few of the individual AKAPs that have been shown to be functionally relevant in the heart. This article is part of a Special Issue entitled "Local Signaling in Myocytes". ► In this review, we discuss A-kinase anchoring proteins expressed in the heart. ► AKAPs are important for cAMP compartmentation. ► AKAP scaffold proteins confer specificity and fidelity to cAMP signaling
    corecore