56 research outputs found

    A-kinase anchoring proteins: scaffolding proteins in the heart.

    No full text
    The pleiotropic cyclic nucleotide cAMP is the primary second messenger responsible for autonomic regulation of cardiac inotropy, chronotropy, and lusitropy. Under conditions of prolonged catecholaminergic stimulation, cAMP also contributes to the induction of both cardiac myocyte hypertrophy and apoptosis. The formation of localized, multiprotein complexes that contain different combinations of cAMP effectors and regulatory enzymes provides the architectural infrastructure for the specialization of the cAMP signaling network. Scaffolds that bind protein kinase A are called "A-kinase anchoring proteins" (AKAPs). In this review, we discuss recent advances in our understanding of how PKA is compartmentalized within the cardiac myocyte by AKAPs and how AKAP complexes modulate cardiac function in both health and disease

    A-kinase anchoring proteins: temporal and spatial regulation of intracellular signal transduction in the cardiovascular system

    No full text
    The prototypical intracellular second messenger cAMP is locally controlled by multimolecular protein complexes organized by A-kinase anchoring proteins (AKAPs). AKAPs serve as scaffolds for different sets of cAMP-metabolizing enzymes that control cAMP gradients and regulate cellular responses. In addition to adenylyl cyclases and phosphodiesterases, AKAPs bind signaling enzymes and ion channels that are important regulators of cardiac contractility and pathophysiological myocyte remodeling and hypertrophy. Compartmentation increases the local concentration of cAMP signaling components, providing faster, higher fidelity regulation of cellular processes. This review series highlights the contribution of AKAPs in the heart as scaffold proteins integrating protein kinases, phosphatases and other effector molecules involved in cAMP-dependent signaling

    The cardiac enigma: current conundrums in heart failure research [version 1; referees: 3 approved]

    No full text
    The prevalence of heart failure is expected to increase almost 50% in the next 15 years because of aging of the general population, an increased frequency of comorbidities, and an improved survival following cardiac events. Conventional treatments for heart failure have remained largely static over the past 20 years, illustrating the pressing need for the discovery of novel therapeutic agents for this patient population. Given the heterogeneous nature of heart failure, it is important to specifically define the cellular mechanisms in the heart that drive the patient’s symptoms, particularly when considering new treatment strategies. This report highlights the latest research efforts, as well as the possible pitfalls, in cardiac disease translational research and discusses future questions and considerations needed to advance the development of new heart failure therapies. In particular, we discuss cardiac remodeling and the translation of animal work to humans and how advancements in our understanding of these concepts relative to disease are central to new discoveries that can improve cardiovascular health

    Signalosomes as therapeutic targets

    No full text
    Cardiac hypertrophy is the predominant compensatory response of the heart to a wide variety of biomechanical stressors, including exercise, hypertension, myocardial infarction, intrinsic cardiomyopathy or congenital heart disease. Although cardiac hypertrophy can maintain cardiac output in response to elevated wall stress, sustained cardiac hypertrophy is often accompanied by maladaptive remodeling which can ultimately lead to heart failure. Cultured cardiac myocytes, transgenic and knock-out animal models, and pharmacological studies have not only revealed key molecules involved in hypertrophic signaling, but have also highlighted the redundancy in the hypertrophic signaling cascade. Currently, the majority of existing therapies for inhibition of pathologic cardiac hypertrophy and heart failure target molecules on the surface of cardiac myocytes, such as G-protein coupled receptors (GPCRs) and ion channels. Because these molecules are upstream of multiple intracellular signaling pathways, however, current therapy is often accompanied by significant off-target effects and toxicity. More recently, research has focused on identifying the intracellular effectors of these signaling cascades in the hope that more selective drugs may be rationally designed for therapeutic intervention. Within the cardiac myocyte, the formation of discrete multimolecular complexes, or ‘signalosomes’, is an important mechanism for increasing the specificity and efficiency of hypertrophic signal transduction. In response to extracellular stimuli, these signalosomes can alter gene and protein expression, cell size, and chamber remodeling, such as in the case of the signalosomes formed by the mAKAPβ and AKAP-lbc scaffold proteins. A better understanding of the basic molecular mechanisms regulating the compartmentation and scaffolding of signaling molecules could lead to the development of new clinical tools that may prevent the development of heart failure and minimize negative impacts on physiological processes

    AKAPs: The architectural underpinnings of local cAMP signaling

    No full text
    The cAMP-dependent protein kinase A (PKA) is targeted to specific compartments in the cardiac myocyte by A-kinase anchoring proteins (AKAPs), a diverse set of scaffold proteins that have been implicated in the regulation of excitation–contraction coupling and cardiac remodeling. AKAPs bind not only PKA, but also a large variety of structural and signaling molecules. In this review, we discuss the basic concepts underlying compartmentation of cAMP and PKA signaling, as well as a few of the individual AKAPs that have been shown to be functionally relevant in the heart. This article is part of a Special Issue entitled "Local Signaling in Myocytes". ► In this review, we discuss A-kinase anchoring proteins expressed in the heart. ► AKAPs are important for cAMP compartmentation. ► AKAP scaffold proteins confer specificity and fidelity to cAMP signaling

    CIP4 is required for the hypertrophic growth of neonatal cardiac myocytes

    No full text
    BACKGROUND: CIP4 is a scaffold protein that regulates membrane deformation and tubulation, organization of the actin cytoskeleton, endocytosis of growth factor receptors, and vesicle trafficking. Although expressed in the heart, CIP4 has not been studied with regards to its potential function in cardiac myocytes. RESULTS: We now show using RNA interference that CIP4 expression in neonatal rat ventricular myocytes is required for the induction of non-mitotic, hypertrophic growth by the α-adrenergic agonist phenylephrine, the IL-6 cytokine leukemia inhibitor factor, and fetal bovine serum, as assayed using morphometry, immunocytochemistry for the hypertrophic marker atrial natriuretic factor and [(3)H]leucine incorporation for de novo protein synthesis. This requirement was consistent with the induction of CIP4 expression by hypertrophic stimulation. The inhibition of myocyte hypertrophy by CIP4 small interfering oligonucleotides (siRNA) was rescued by expression of a recombinant CIP4 protein, but not by a mutant lacking the N-terminal FCH domain responsible for CIP4 intracellular localization. CONCLUSIONS: These results imply that CIP4 plays a significant role in the intracellular hypertrophic signal transduction network that controls the growth of cardiac myocytes in heart disease
    corecore