40 research outputs found

    Good Intentions: Adaptive Parameter Management via Intent Signaling

    Full text link
    Parameter management is essential for distributed training of large machine learning (ML) tasks. Some ML tasks are hard to distribute because common approaches to parameter management can be highly inefficient. Advanced parameter management approaches -- such as selective replication or dynamic parameter allocation -- can improve efficiency, but to do so, they typically need to be integrated manually into each task's implementation and they require expensive upfront experimentation to tune correctly. In this work, we explore whether these two problems can be avoided. We first propose a novel intent signaling mechanism that integrates naturally into existing ML stacks and provides the parameter manager with crucial information about parameter accesses. We then describe AdaPM, a fully adaptive, zero-tuning parameter manager based on this mechanism. In contrast to prior systems, this approach separates providing information (simple, done by the task) from exploiting it effectively (hard, done automatically by AdaPM). In our experimental evaluation, AdaPM matched or outperformed state-of-the-art parameter managers out of the box, suggesting that automatic parameter management is possible

    NuPS: A Parameter Server for Machine Learning with Non-Uniform Parameter Access

    Get PDF
    Parameter servers (PSs) facilitate the implementation of distributed training for large machine learning tasks. In this paper, we argue that existing PSs are inefficient for tasks that exhibit non-uniform parameter access; their performance may even fall behind that of single node baselines. We identify two major sources of such non-uniform access: skew and sampling. Existing PSs are ill-suited for managing skew because they uniformly apply the same parameter management technique to all parameters. They are inefficient for sampling because the PS is oblivious to the associated randomized accesses and cannot exploit locality. To overcome these performance limitations, we introduce NuPS, a novel PS architecture that (i) integrates multiple management techniques and employs a suitable technique for each parameter and (ii) supports sampling directly via suitable sampling primitives and sampling schemes that allow for a controlled quality--efficiency trade-off. In our experimental study, NuPS outperformed existing PSs by up to one order of magnitude and provided up to linear scalability across multiple machine learning tasks

    Amada: Web Data Repositories in the Amazon Cloud

    Get PDF
    ABSTRACT We present Amada, a platform for storing Web data (in particular, XML documents and RDF graphs) based on the Amazon Web Services (AWS) cloud infrastructure. Amada operates in a Software as a Service (SaaS) approach, allowing users to upload, index, store, and query large volumes of Web data. The demonstration shows (i) the step-by-step procedure for building and exploiting the warehouse (storing, indexing, querying) and (ii) the monitoring tools enabling one to control the expenses (monetary costs) charged by AWS for the operations involved while running Amada

    Κατανεμημένη αποτίμηση επερωτήσεων και συλλογιστική για το μοντέλο RDF σε δίκτυα ομότιμων κόμβων

    Full text link
    With the interest in Semantic Web applications rising rapidly, the Resource Description Framework (RDF) and its accompanying vocabulary description language, RDF Schema (RDFS), have become one of the most widely used data models for representing and integrating structured information in the Web. With the vast amount of available RDF data sources on the Web increasing rapidly, there is an urgent need for RDF data management. In this thesis, we focus on distributed RDF data management in peer-to-peer (P2P) networks. More specifically, we present results that advance the state-of-the-art in the research area of distributed RDF query processing and reasoning in P2P networks. We fully design and implement a P2P system, called Atlas, for the distributed query processing and reasoning of RDF and RDFS data. Atlas is built on top of distributed hash tables (DHTs), a commonly-used case of P2P networks. Initially, we study RDFS reasoning algorithms on top of DHTs. We design and develop distributed forward and backward chaining algorithms, as well as an algorithm which works in a bottom-up fashion using the magic sets transformation technique. We study theoretically the correctness of our reasoning algorithms and prove that they are sound and complete. We also provide a comparative study of our algorithms both analytically and experimentally. In the experimental part of our study, we obtain measurements in the realistic large-scale distributed environment of PlanetLab as well as in the more controlled environment of a local cluster. Moreover, we propose algorithms for SPARQL query processing and optimization over RDF(S) databases stored on top of distributed hash tables. We fully implement and evaluate a DHT-based optimizer. The goal of the optimizer is to minimize the time for answering a query as well as the bandwidth consumed during the query evaluation. The optimization algorithms use selectivity estimates to determine the chosen query plan. Our algorithms and techniques have been extensively evaluated in a local cluster.Με το ενδιαφέρον για τις εφαρμογές του Σημασιολογικού Ιστού να αυξάνεται ραγδαία, το μοντέλο RDF και RDFS έχει γίνει ένα από τα πιο ευρέως χρησιμοποιούμενα μοντέλα δεδομένων για την αναπαράσταση και την ενσωμάτωση δομημένης πληροφορίας στον Ιστό. Το πλήθος των διαθέσιμων πηγών πληροφορίας RDF συνεχώς αυξάνεται με αποτέλεσμα να υπάρχει μια επιτακτική ανάγκη για τη διαχείριση RDF δεδομένων. Σε αυτή τη διατριβή επικεντρωνόμαστε στην κατανεμημένη διαχείριση RDF δεδομένων σε δίκτυα ομότιμων κόμβων. Σχεδιάζουμε και υλοποιούμε το σύστημα Atlas, ένα πλήρως κατανεμημένο σύστημα για την αποθήκευση RDF και RDFS δεδομένων, την αποτίμηση και βελτιστοποίηση επερωτήσεων στη γλώσσα SPARQL και τη συλλογιστική στο μοντέλο RDFS. Το σύστημα Atlas χρησιμοποιεί κατανεμημένους πίνακες κατακερματισμού, μια δημοφιλή περίπτωση δικτύων ομότιμων κόμβων. Αρχικά, αναλύουμε κατανεμημένους αλγόριθμους για συλλογιστική RDFS χρησιμοποιώντας κατανεμημένους πίνακες κατακερματισμού. Υλοποιηούμε διάφορες παραλλαγές των αλγορίθμων προς τα εμπρός αλυσίδα εκτέλεσης και προς τα πίσω αλυσίδα εκτέλεσης καθώς και έναν αλγόριθμο που χρησιμοποιεί την τεχνική μετασχηματισμού των κανόνων σε μαγικό σύνολο. Αποδεικνύουμε θεωρητικά την ορθότητα των αλγορίθμων αυτών και προσφέρουμε μια συγκριτική μελέτη τόσο αναλυτικά όσο και πειραματικά. Παράλληλα, προτείνουμε αλγορίθμους και τεχνικές για την αποτίμηση και τη βελτιστοποίηση επερωτήσεων στη γλώσσα SPARQL για RDF δεδομένα που είναι αποθηκευμένα σε κατανεμημένους πίνακες κατακερματισμού. Οι τεχνικές βελτιστοποίησης βασίζονται σε εκτιμήσεις επιλεκτικότητας και έχουν στόχο τη μείωση του χρόνου απόκρισης της επερώτησης καθώς και της κατανάλωσης εύρους ζώνης του δικτύου. Η εκτεταμένη πειραματική αξιολόγηση των μεθόδων βελτιστοποίησης γίνεται σε μια τοπική συστάδα υπολογιστών χρησιμοποιώντας ένα ευρέως διαδεδομένο σημείο αναφοράς μετρήσεων

    RDF in the Clouds: A Survey

    Get PDF
    International audienceThe Resource Description Framework (RDF) pioneered by the W3C is increasingly being adopted to model data in a variety of scenarios, in particular data to be published or exchanged on the Web. Managing large volumes of RDF data is challenging, due to the sheer size, the heterogeneity, and the further complexity brought by RDF reasoning. To tackle the size challenge, distributed storage architectures are required. Cloud computing is an emerging paradigm massively adopted in many applications for the scalability, fault-tolerance and elasticity features it provides, enabling the easy deployment of distributed and parallel architectures. In this article, we survey RDF data management architectures and systems designed for a cloud environment, and more generally, those large-scale RDF data management systems that can be easily deployed therein. We first give the necessary background, then describe the existing systems and proposals in this area, and classify them according to dimensions related to their capabilities and implementation techniques. The survey ends with a discussion of open problems and perspectives

    Triples in the clouds

    Get PDF
    International audienceThe W3C's Resource Description Framework (or RDF, in short) is a promising candidate which may deliver many of the original semi-structured data promises: flexible structure, optional schema, and rich, flexible Uniform Resource Identifiers as a basis for information sharing. Moreover, RDF is uniquely positioned to benefit from the efforts of scientific communities studying databases, knowledge representation, and Web technologies. Many RDF data collections are being published, going from scientific data to general-purpose ontologies to open government data, in particular in the Linked Data movement. Managing such large volumes of RDF data is challenging, due to the sheer size, the heterogeneity, and the further complexity brought by RDF reasoning. To tackle the size challenge, dis- tributed storage architectures are needed. Cloud computing is an emerging paradigm massively adopted in many applications for the scalability, fault-tolerance and elasticity features it provides. This tutorial discusses the problems involved in efficiently handling massive amounts of RDF data in a cloud environment. We provide the necessary background, analyze and classify existing solutions, and discuss open problems and perspectives
    corecore