70 research outputs found

    General concept for autoignitive reaction wave covering from subsonic to supersonic regimes

    Full text link
    We consider a one-dimensional (1D) autoignitive reaction wave in reactive flow system comprising unburned premixed gas entering from the inlet boundary and burned gas exiting from the outlet boundary. In such a 1D system at given initial temperature, it is generally accepted that steady-state solutions can only exist if the inlet velocity matches either the velocity of deflagration wave, as determined by the burning rate eigenvalue in the subsonic regime or the velocity of detonation wave as dictated by the Chapman-Jouguet (CJ) condition in the supersonic regime. In this study, we developed the general concept of "autoignitive reaction wave" and theoretically demonstrate that two distinct regimes that can maintain steady-state solutions both in subsonic and supersonic conditions. Based on this theory, we selected inlet velocities that are predicted to yield either steady-state or flashback solutions, and conducted numerical simulations. This novel approach revealed that steady-state solutions are possible not only at the velocity of the deflagration wave in the subsonic regime and the velocity of the detonation wave in the supersonic regime, but also across a broad range of inlet velocities. Furthermore, we identify a highly stable "autoignitive reaction wave" that emerges when the inlet velocity surpasses the velocity of detonation wave, devoid of the typical shock wave commonly seen in detonation waves. This "supersonic autoignitive reaction wave" lacks the instability-inducing detonation cell structure, suggesting the potential for the development of novel combustor concepts.Comment: Prior to publication please use: "The following article has been submitted to Physics of Fluids. After it is published, it will be found at Link.
    corecore