13,151 research outputs found

    Drifting diffusion on a circle as continuous limit of a multiurn Ehrenfest model

    Full text link
    We study the continuous limit of a multibox Erhenfest urn model proposed before by the authors. The evolution of the resulting continuous system is governed by a differential equation, which describes a diffusion process on a circle with a nonzero drifting velocity. The short time behavior of this diffusion process is obtained directly by solving the equation, while the long time behavior is derived using the Poisson summation formula. They reproduce the previous results in the large MM (number of boxes) limit. We also discuss the connection between this diffusion equation and the Schroš\ddot{\rm o}dinger equation of some quantum mechanical problems.Comment: 4 pages prevtex4 file, 1 eps figur

    Symmetry between repulsive and attractive interactions in driven-dissipative Bose-Hubbard systems

    Full text link
    The driven-dissipative Bose-Hubbard model can be experimentally realized with either negative or positive onsite detunings, inter-site hopping energies, and onsite interaction energies. Here we use one-dimensional matrix product density operators to perform a fully quantum investigation of the dependence of the non-equilibrium steady states of this model on the signs of these parameters. Due to a symmetry in the Lindblad master equation, we find that simultaneously changing the sign of the interaction energies, hopping energies, and chemical potentials leaves the local boson number distribution and inter-site number correlations invariant, and the steady-state complex conjugated. This shows that all driven-dissipative phenomena of interacting bosons described by the Lindblad master equation, such as "fermionization" and "superbunching", can equivalently occur with attractive or repulsive interactions.Comment: single column 12 pages, 4 figures, 1 tabl

    Magnetic Field Effects in the Pseudogap Phase: A Precursor Superconductivity Scenario

    Full text link
    We demonstrate that the observed dependences of TcT_c and T∗T^* on small magnetic fields can be readily understood in a precursor superconductivity approach to the pseudogap phase. In this approach, the presence of a pseudogap at TcT_c (but not at T∗T^*) and the associated suppression of the density of states lead to very different sensitivities to pair-breaking perturbations for the two temperatures. Our semi-quantitative results address the puzzling experimental observation that the coherence length Ο\xi is weakly dependent on hole concentration xx throughout most of the phase diagram. We present our results in a form which can be compared with the recent experiments of Shibauchi et al, and argue that orbital effects contribute in an important way to the HH dependence of T∗T^*.Comment: 6 pages, 1 figure, elsart.cls included. Submitted to the proceeding of SNS 2001, Chicag

    Mass Spectra of N=2 Supersymmetric SU(n) Chern-Simons-Higgs Theories

    Full text link
    An algebraic method is used to work out the mass spectra and symmetry breaking patterns of general vacuum states in N=2 supersymmetric SU(n) Chern-Simons-Higgs systems with the matter fields being in the adjoint representation. The approach provides with us a natural basis for fields, which will be useful for further studies in the self-dual solutions and quantum corrections. As the vacuum states satisfy the SU(2) algebra, it is not surprising to find that their spectra are closely related to that of angular momentum addition in quantum mechanics. The analysis can be easily generalized to other classical Lie groups.Comment: 17 pages, use revte

    New Predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory

    Full text link
    We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering (VCS) at O(p4){\cal O}(p^4) in heavy baryon chiral perturbation theory. At this order, no unknown low energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the VCS amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double polarization experiments which allow to access these spin-flip GPs of the nucleon.Comment: 15 pages, 3 figure

    Magnetic field effects on TcT_c and the pseudogap onset temperature in cuprate superconductors

    Full text link
    We study the sensitivity of TcT_c and the pseudogap onset temperature, T∗T^*, to low fields, HH, for cuprate superconductors, using a BCS-based approach extended to arbitrary coupling. We find that T∗T^* and TcT_c, which are of the same superconducting origin, have very different HH dependences. The small coherence length makes T∗T^* rather insensitive to the field. However, the presence of the pseudogap at TcT_c makes TcT_c more sensitive to HH. Our results for the coherence length Ο\xi fit well with existing experiments. We predict that very near the insulator Ο\xi will rapidly increase.Comment: 4 pages, 1 figure, contribution to the PPHMF-IV conference, Oct. 200

    Supersymmetric Electroweak Parity Nonconservation in Top Quark Pair Production at the Fermilab Tevatron

    Get PDF
    We evaluate the supersymmetric (SUSY) electroweak corrections to the effect of parity nonconservation in qqˉ→ttˉq {\bar q} \to t {\bar t} production at the Fermilab Tevatron predicted by the Minimal Supersymmetric Model (MSSM). We find that the parity nonconserving asymmetry from the SUSY electroweak and SUSY Yukawa loop corrections predicted by the minimal supergravity (mSUGRA) model and the MSSM models with scenarios motivated by current data is about one percent. It will be challenging to observe such a small asymmetry at the Tevatron with 10 fb^{-1} of luminosity. It could however be observable if both the top- and bottom-squarks are light and tan⁥ÎČ\tan \beta is smaller than 1, though theses parameters are not favored by mSUGRA.Comment: revised version, some new numerical results adde

    The Chern-Simons Coefficient in Supersymmetric Non-abelian Chern-Simons Higgs Theories

    Get PDF
    By taking into account the effect of the would be Chern-Simons term, we calculate the quantum correction to the Chern-Simons coefficient in supersymmetric Chern-Simons Higgs theories with matter fields in the fundamental representation of SU(n). Because of supersymmetry, the corrections in the symmetric and Higgs phases are identical. In particular, the correction is vanishing for N=3 supersymmetric Chern-Simons Higgs theories. The result should be quite general, and have important implication for the more interesting case when the Higgs is in the adjoint representation.Comment: more references and explanation about rgularization dpendence are included, 13 pages, 1 figure, latex with revte
    • 

    corecore