9,167 research outputs found
The Chern-Simons Coefficient in Supersymmetric Non-abelian Chern-Simons Higgs Theories
By taking into account the effect of the would be Chern-Simons term, we
calculate the quantum correction to the Chern-Simons coefficient in
supersymmetric Chern-Simons Higgs theories with matter fields in the
fundamental representation of SU(n). Because of supersymmetry, the corrections
in the symmetric and Higgs phases are identical. In particular, the correction
is vanishing for N=3 supersymmetric Chern-Simons Higgs theories. The result
should be quite general, and have important implication for the more
interesting case when the Higgs is in the adjoint representation.Comment: more references and explanation about rgularization dpendence are
included, 13 pages, 1 figure, latex with revte
Electronic structure and magnetic properties of epitaxial FeRh(001) ultra-thin films on W(100)
Epitaxial FeRh(100) films (CsCl structure, thick), prepared
{\it in-situ} on a W(100) single crystal substrate, have been investigated via
valence band and core level photoemission. The presence of the
temperature-induced, first-order, antiferromagnetic to ferromagnetic
(AF FM) transition in these films has been verified via linear
dichroism in photoemission from the Fe 3 levels. Core level spectra indicate
a large moment on the Fe atom, practically unchanged in the FM and AF phases.
Judging from the valence band spectra, the metamagnetic transition takes place
without substantial modification of the electronic structure. In the FM phase,
the spin-resolved spectra compare satisfactorily to the calculated
spin-polarized bulk band structure.Comment: 7 pages, 5 figure
Tunneling in Squeezing Ground
A criterion for identifying the squeezing potential of tunnel is proposed. Tunneling conditions, classified as slightly or non-squeezing, moderately squeezing and highly squeezing, were identified by relating the strength-stress (σcm/Po ) ratio to the development of plastic zone extent and the amount of tunnel closure. Actual case histories of tunneling in Taiwan show that this criterion predicts the tunnel performance quite well. This enables the identification of tunneling conditions expected which require special considerations in support design and excavation-support procedures
Partial Wave Analysis of Scattering with Nonlocal Aharonov-Bohm Effect and Anomalous Cross Section induced by Quantum Interference
Partial wave theory of a three dmensional scattering problem for an arbitray
short range potential and a nonlocal Aharonov-Bohm magnetic flux is
established. The scattering process of a ``hard shere'' like potential and the
magnetic flux is examined. An anomalous total cross section is revealed at the
specific quantized magnetic flux at low energy which helps explain the
composite fermion and boson model in the fractional quantum Hall effect. Since
the nonlocal quantum interference of magnetic flux on the charged particles is
universal, the nonlocal effect is expected to appear in quite general potential
system and will be useful in understanding some other phenomena in mesoscopic
phyiscs.Comment: 6 figure
Nonmagnetic impurity perturbation to the quasi-two-dimensional quantum helimagnet LiCu2O2
A complete phase diagram of Zn substituted quantum quasi-two-dimensional
helimagnet LiCu2O2 has been presented. Helical ordering transition temperature
(T_h) of the original LiCu2O2 follows finite size scaling for less than ~ 5.5%
Zn substitution, which implies the existence of finite helimagnetic domains
with domain boundaries formed with nearly isolated spins. Higher Zn
substitution > 5.5% quenches the long-range helical ordering and introduces an
intriguing Zn level dependent magnetic phase transition with slight thermal
hysteresis and a universal quadratic field dependence for T_c (Zn > 0.055,H).
The magnetic coupling constants of nearest-neighbor (nn) J1 and
next-nearest-neighbor (nnn) J2 (alpha=J2/J1) are extracted from high
temperature series expansion (HTSE) fitting and N=16 finite chain exact
diagonalization simulation. We have also provided evidence of direct
correlation between long-range helical spin ordering and the magnitude of
electric polarization in this spin driven multiferroic material
- …