14 research outputs found
Design aspects for Deep Soil Mixing columns under Bridges
Obecnie Polska jest jednym z przodujących krajów w realizacjach wzmocnienia podłoża pod obiektami mostowymi w technologii DSM Wet. Jest to technologia lubiana nie tylko przez wykonawców, ale i projektantów.In the paper design problems concerning Deep Soil Mixing constituing the soil strengthening under Bridges were mentioned. Most common design approaches in this technique (Wet DSM) were described. The author focused the considerations on three main topics: the decomposition of horizontal force, soil cement mix strength increase in time and stiffness of the mix. The paper presents analysis based on numerical FEM model concerning the first issue, and author own research results aboutthe second and third issue
Analiza wpływu formowania kolumn kamiennych wykonywanych metodą dynamicznej wymiany na pobliskie konstrukcje inżynierskie
This paper presents the analysis of the influence of works related to the dynamic replacement column formation on the bridge pillar and the highway embankment located nearby. Thanks to DR columns, it is possible to strengthen the soil under road embankment in a very efficient way. However, the construction of such support carries risk to buildings and engineering structures located in the neighbourhood. Therefore modelling and monitoring of the influence of the conducted works should be an indispensable element of each investment in which dynamic replacement method is applied. The presented issue is illustrated by the example of soil strengthening with DR columns constructed under road embankment of DTŚ highway located in Gliwice. During the inspection, the influence of vibrations on the nearby bridge pillar and road embankment was examined. The acceleration values obtained during these tests were used to verify the elaborated numerical model.W artykule przedstawiono analizę wpływu robót związanych z formowaniem kolumn wymiany dynamicznej na znajdujący się w pobliżu filar mostowy oraz nasyp autostradowy. Aby uformować kolumnę, należy w pierwszej kolejności wybić w podłożu krater, który następnie jest zasypywany kruszywem grubookruchowym. W dalszej kolejności następuje zagęszczanie wsypanego kruszywa i kolejne wypełnienie krateru. Zarówno wybicie krateru, jak i zagęszczanie kruszywa wykonywane jest poprzez zrzuty ciężkiego ubijaka z dużej wysokości. W Polsce zwykle stosuje się ubijaki o masie 10 – 30 ton, które są zrzucane z wysokości 10 – 25 m. Formowanie następuje aż do uzyskania wyraźnego oporu wpędu kolumny, co objawia się zwiększeniem średnicy kolumny. Kolumny kamienne w technologii DR pozwalają na niezwykle skutecznie wzmocnienie podłoża pod nasypami drogowymi, jednak ich wykonywanie wiąże się z zagrożeniem dla pobliskich konstrukcji budowlanych i inżynierskim. Dlatego też modelowanie jak i monitorowanie wpływów prowadzonych robót na sąsiedztwo winno być nieodzowną częścią każdej inwestycji z zastosowaniem tej technologii
The influence of the formation energy on the shape of the columns formed with the use of dynamic replacement method
Kolumny kamienne formowane metodą wymiany dynamicznej to jedna z wielu metod geoinżynierii, szeroko stosowana do wzmacniania gruntów spoistych i/lub organicznych, pod obiektami liniowymi i kubaturowymi. Polega ona na wbijaniu w słabe podłoże kruszywa z użyciem udarów o dużej energii, w określonej siatce punktów. Z pozoru prosta technologia, w praktyce może sprawiać pewne trudności. Powodem tego może być przyjęcie nieodpowiedniej energii uderzenia podczas wzmacniania podłoża, co rzutuje na średnicę i długość uzyskanych kolumn. W skrajnych przypadkach może dochodzić do całkowitej wymiany gruntu, bądź wykonania kolumn za krótkich. Powyższe przesłanki skłoniły Autorów referatu do wykonania szeregu badań, w skali laboratoryjnej, których celem było określenie wpływu energii uderzenia na kształt uzyskiwanych kolumn. Badania przeprowadzono na stanowisku badawczym, które umożliwiało obserwację procesu formowania kolumny wbijanej. Jego wymiary dostosowano tak, aby zagadnienie rzeczywiste zamodelować w skali geometrycznej 1:10. Dla zaobserwowania procesów zachodzących podczas wbijania cały proces filmowano i fotografowano. Przeanalizowano trzy warianty wzmocnienia a mianowicie: przy względnie stałej lecz niedużej (kolumna nr 2), stałej i maksymalnej w prowadzonych badaniach (kolumna nr 3) oraz stopniowo narastającej (kolumna nr 1) energii. Uzyskano różne pod względem kształtu kolumny. Całość poprzedzono krótką informacją na temat wymiany dynamicznej.Driven stone columns formed with the use of dynamic replacement method is one of many geoengineering methods, widely used to strengthen the cohesive and/or organic soils under the linear and cubature objects. It is based on ramming of the aggregate into weak soil using drops of high energy in the specified grid of points. Despite apparent simplicity, the method may pose some problems in practice. They may be caused by inadequate choice of the drop energy during the soil reinforcement which influences the diameter and the length of the columns. In extreme cases the columns may be too short or there may appear a total soil replacement. For these reasons the authors of the paper decided to carry out a series of laboratory tests which aimed at determining the influence of the drop energy on the shape of the columns. The research was carried out on the test stand that allowed the observation of the formation process of a rammed column. Its dimensions were adjusted so as to reflect the real dimensions in scale 1:10. In order to carry out the observations of the processes intervening during the rammed column formation the experiments were filmed and photographed. Three following variations of reinforcement were analysed: by using a relatively constant but low (column No. 2), constant and maximal in the carried research (column No. 3) and gradually increasing (column No. 1) energy. The obtained columns differed in shape. The whole is preceded by a short information about the dynamic replacement method
Analysis Of Dynamic Replacement Column Construction Process On Neighbouring Engineering Structures
This paper presents the analysis of the influence of works related to the dynamic replacement column formation on the bridge pillar and the highway embankment located nearby. Thanks to DR columns, it is possible to strengthen the soil under road embankment in a very efficient way. However, the construction of such support carries risk to buildings and engineering structures located in the neighbourhood. Therefore modelling and monitoring of the influence of the conducted works should be an indispensable element of each investment in which dynamic replacement method is applied. The presented issue is illustrated by the example of soil strengthening with DR columns constructed under road embankment of DTŚ highway located in Gliwice. During the inspection, the influence of vibrations on the nearby bridge pillar and road embankment was examined. The acceleration values obtained during these tests were used to verify the elaborated numerical model.W artykule przedstawiono analizę wpływu robót związanych z formowaniem kolumn wymiany dynamicznej na znajdujący się w pobliżu filar mostowy oraz nasyp autostradowy. Aby uformować kolumnę, należy w pierwszej kolejności wybić w podłożu krater, który następnie jest zasypywany kruszywem grubookruchowym. W dalszej kolejności następuje zagęszczanie wsypanego kruszywa i kolejne wypełnienie krateru. Zarówno wybicie krateru, jak i zagęszczanie kruszywa wykonywane jest poprzez zrzuty ciężkiego ubijaka z dużej wysokości. W Polsce zwykle stosuje się ubijaki o masie 10 – 30 ton, które są zrzucane z wysokości 10 – 25 m. Formowanie następuje aż do uzyskania wyraźnego oporu wpędu kolumny, co objawia się zwiększeniem średnicy kolumny. Kolumny kamienne w technologii DR pozwalają na niezwykle skutecznie wzmocnienie podłoża pod nasypami drogowymi, jednak ich wykonywanie wiąże się z zagrożeniem dla pobliskich konstrukcji budowlanych i inżynierskim. Dlatego też modelowanie jak i monitorowanie wpływów prowadzonych robót na sąsiedztwo winno być nieodzowną częścią każdej inwestycji z zastosowaniem tej technologii
Wzmocnienie podłoża gruntowego pod obiektami mostowymi na drodze S3
W artykule opisano przygotowanie oraz wykonanie wzmocnienia podłoża gruntowego pod siedem obiektów mostowych (typu WD, WS, WDJ, WSJ), realizowanych w ramach zadania Zaprojektowanie i wybudowanie drogi ekspresowej S3 Legnica (A4) – Lubawka, zadanie I od węzła Legnica II (bez węzła) do węzła Jawor II (z węzłem) o długości ok. 19,730 km, tj. od km 2 + 420,47 do km 22 + 150,00
Analysis Of Dynamic Replacement Column Construction Process On Neighbouring Engineering Structures
This paper presents the analysis of the influence of works related to the dynamic replacement column formation on the bridge pillar and the highway embankment located nearby. Thanks to DR columns, it is possible to strengthen the soil under road embankment in a very efficient way. However, the construction of such support carries risk to buildings and engineering structures located in the neighbourhood. Therefore modelling and monitoring of the influence of the conducted works should be an indispensable element of each investment in which dynamic replacement method is applied. The presented issue is illustrated by the example of soil strengthening with DR columns constructed under road embankment of DTŚ highway located in Gliwice. During the inspection, the influence of vibrations on the nearby bridge pillar and road embankment was examined. The acceleration values obtained during these tests were used to verify the elaborated numerical model
Foundation of the expressway embankment on organic subsoil
Omawiany problem związany jest z projektem przebudowy nasypu modernizowanej drogi. Skarpa istniejącego nasypu wykazywała oznaki utraty stateczności, której przyczyną były występujące pod częścią nasypu ściśliwe grunty organiczne o miąższości dochodzącej do 12 m. Na pozostałym obszarze podłoże było nośne i mało ściśliwe. Bardzo zróżnicowane charakterystyki gruntów podłoża i niestateczność istniejącej skarpy skłoniły projektantów do posadowienia nowo projektowanego nasypu na płycie żelbetowej opartej na palach. Artykuł pokazuje alternatywne rozwiązanie, wykorzystujące istniejący nasyp zabezpieczony kotwioną ścianką szczelną. Skuteczność rozwiązania uzasadniają wyniki analiz stateczności. Wykonano je dwoma sposobami: tradycyjną uproszczoną
metodą Bishopa i metodą elementów skończonych. Wyniki obliczeń poddano krytycznej ocenie.A reconstruction of the embankment in the context of the modernisation of an existing road has been designed. The embankment exhibits unstable behaviour. Compressible organic soils with a thickness up to 12 m underlay part of the embankment base. The rest of the foundation ground is made of bearing, hard soils. Very different characteristics of the foundation soils and the existing slope
instability led designers to foundation of the rebuilt embankment on a concrete slab based on driven piles. The paper shows an alternative solution which makes use of the existing embankment supported with an anchored sheet pile wall. Effectiveness of the solution has been proved by stability analysis carried out in two ways: by FEM and simplified Bishop’s procedure. Results of the analyses have been compared and discussed
On the hazards related to designing DSM columns in organic soil
W artykule zaprezentowano aktualne uwarunkowania dotyczące projektowania wzmocnień i posadowień w technologii Deep Soil Mixing (DSM), wyniki badań laboratoryjnych prób cementogruntu uformowanych w warunkach laboratoryjnych z zaczynu cementowego i torfu oraz konsekwencje stosowania tworzyw o niskich parametrach wytrzymałościowych i odkształceniowych. Badania na próbkach sześciennych pozwoliły na wyznaczenie wytrzymałości na ściskanie i rozciąganie oraz modułu odkształcenia. Wyniki późniejszych analiz numerycznych uzyskano z wykorzystaniem programu metody elementów skończonych Z_Soil i danych z badań laboratoryjnych. Wykonane obliczenia stanowią poważne ostrzeżenie i praktyczną podstawę do wnioskowania o ograniczonej możliwości skutecznej modyfikacji gruntów organicznych z wykorzystaniem technologii DSM.The paper outlines the current aspects of designing reinforcements and foundations using Deep Soil Mixing (DSM) technology, the outcomes of laboratory test of soil cement samples obtained in laboratory conditions from cement grout and peat, and the consequences of using materials with low strength parameters and deformation strength. In the tests conducted on cubic samples, the compressive and tensile strength, and the deformation module were determined. The results of subsequent numerical analyses were obtained with the use of finite elements method Z_Soil and data from laboratory tests. The results of the calculations bring a serious warning and provide practical ground to conclude that the capability to efficiently modify organic soil using DSM is limited