23 research outputs found
Calculation of electron density of periodic systems using non-orthogonal localised orbitals
Methods for calculating an electron density of a periodic crystal constructed
using non-orthogonal localised orbitals are discussed. We demonstrate that an
existing method based on the matrix expansion of the inverse of the overlap
matrix into a power series can only be used when the orbitals are highly
localised (e.g. ionic systems). In other cases including covalent crystals or
those with an intermediate type of chemical bonding this method may be either
numerically inefficient or fail altogether. Instead, we suggest an exact and
numerically efficient method which can be used for orbitals of practically
arbitrary localisation. Theory is illustrated by numerical calculations on a
model system.Comment: 12 pages, 4 figure
Understanding the disorder of the DNA base cytosine on the Au(111) surface
Using ultrahigh vacuum scanning tunneling microscopy (STM) and ab initio density functional theory, we have investigated in detail structures formed by cytosine on the Au(111) surface in clean ultrahigh vacuum conditions. In spite of the fact that the ground state of this DNA base on the surface is shown to be an ordered arrangement of cytosine one-dimensional branches (filaments), this structure has never been observed in our STM experiments. Instead, disordered structures are observed, which can be explained by only a few elementary structural motifs: filaments, five- and sixfold rings, which randomly interconnect with each other forming bent chains, T junctions, and nanocages. The latter may have trapped smaller structures inside. The formation of such an unusual assembly is explained by simple kinetic arguments as a liquid-glass transition. © 2008 American Institute of Physics
Temperature control in molecular dynamic simulations of non-equilibrium processes
Thermostats are often used in various condensed matter problems, e.g. when a biological molecule undergoes a transformation in a solution, a crystal surface is irradiated with energetic particles, a crack propagates in a solid upon applied stress, two surfaces slide with respect to each other, an excited local phonon dissipates its energy into a crystal bulk, and so on. In all of
these problems, as well as in many others, there is an energy transfer between different local parts of the entire system kept at a constant temperature. Very often, when modelling such processes using molecular dynamics simulations, thermostatting is done using strictly
equilibrium approaches serving to describe the NV T ensemble. In this paper we critically discuss the applicability of such approaches to non-equilibrium problems, including those mentioned above, and stress that the correct temperature control can only be achieved if the
method is based on the generalized Langevin equation (GLE). Specifically, we emphasize that a meaningful compromise between computational efficiency and a physically appropriate implementation of the NV T thermostat can be achieved, at least for solid state and surface
problems, if the so-called stochastic boundary conditions (SBC), recently derived from the GLE (Kantorovich and Rompotis 2008 Phys. Rev. B 78 094305), are used. For SBC, the Langevin thermostat is only applied to the outer part of the simulated fragment of the entire system which
borders the surrounding environment (not considered explicitly) serving as a heat bath. This point is illustrated by comparing the performance of the SBC and some of the equilibrium thermostats in two problems: (i) irradiation of the Si(001) surface with an energetic CaF2
molecule using an ab initio density functional theory based method, and (ii) the tribology of two amorphous SiO2 surfaces coated with self-assembled monolayers of methyl-terminated hydrocarbon alkoxylsilane molecules using a classical atomistic force field. We discuss the
differences in behaviour of these systems due to applied thermostatting, and show that in some cases a qualitatively different physical behaviour of the simulated system can be obtained if an equilibrium thermostat is used
Xanthine quartets on Au(111)
The quartet of xanthine (X), a purine base ubiquitously distributed in most human body tissues and fluids, has been for the first time fabricated and visualized, as the first alternative purine quartet besides the known guanine (G)-quartet. The X-quartet network is demonstrated to be the most stable phase on Au(111). Unlike guanine, the fabrication of the X-quartets is not dependent on the presence of metal atoms, which makes it the first metal-free purine quartet. The X-quartet holds great promise to potentially construct artificial new DNA quadruplexes for genetic regulation and antitumor therapy. Moreover, both the X-quartet itself and the quartet networks favor homochirality, suggesting homochiral xanthine oligomers and the networks may have been formed as the precursors of the pristine oligonucleotides on primitive Earth
Kinetic control of molecular assembly on surfaces
It is usually assumed that molecules deposited on surfaces assume the most thermodynamically stable structure. Here we show, by considering a model system of dihydroxybenzoic acid molecules on the (10.4) surface of calcite, that metastable molecular architectures may also be accessed by choosing a suitable initial state of the molecules which defines the observed transformation path. Moreover, we demonstrate that the latter
is entirely controlled by kinetics rather than thermodynamics. We argue that molecules are deposited as dimers that undergo, upon increase of temperature, a series of structural transitions from clusters to ordered striped and then dense networks, and finally to a disordered structure. Combining high-resolution dynamic atomic force microscopy experiments and density-functional theory calculations, we provide a comprehensive analysis of the fundamental principles driving this sequence of transitions. Our study may open new avenues based on kinetic control as a promising strategy for achieving tailored molecular architectures on surfaces
Homopairings of the Artificial Nucleobase 1H-Benzoimidazole-4,7-dione
All planar homopairings of the artificial nucleobase 1H-benzoimidazole-4,7-dione are reported for the first time in this study. Using the idea of binding sites discussed in our previous work and an ab initio density functional theory method we predict 13 homopairs. The stabilization energies of the homopairs vary from -0.13 to -0.69 eV. The collected data on all the planar homopairs reported here may be useful when constructing assemblies of this artificial base on various solid substrates
Dihydride dimer structures on the Si(100):H surface studied by low-temperature scanning tunneling microscopy
Non peer reviewe