9 research outputs found

    The PICTURE study: diagnostic accuracy of multiparametric MRI in men requiring a repeat prostate biopsy.

    Get PDF
    BACKGROUND: Transrectal prostate biopsy has limited diagnostic accuracy. Prostate Imaging Compared to Transperineal Ultrasound-guided biopsy for significant prostate cancer Risk Evaluation (PICTURE) was a paired-cohort confirmatory study designed to assess diagnostic accuracy of multiparametric magnetic resonance imaging (mpMRI) in men requiring a repeat biopsy. METHODS: All underwent 3 T mpMRI and transperineal template prostate mapping biopsies (TTPM biopsies). Multiparametric MRI was reported using Likert scores and radiologists were blinded to initial biopsies. Men were blinded to mpMRI results. Clinically significant prostate cancer was defined as Gleason ⩾4+3 and/or cancer core length ⩾6 mm. RESULTS: Two hundred and forty-nine had both tests with mean (s.d.) age was 62 (7) years, median (IQR) PSA 6.8 ng ml (4.98-9.50), median (IQR) number of previous biopsies 1 (1-2) and mean (s.d.) gland size 37 ml (15.5). On TTPM biopsies, 103 (41%) had clinically significant prostate cancer. Two hundred and fourteen (86%) had a positive prostate mpMRI using Likert score ⩾3; sensitivity was 97.1% (95% confidence interval (CI): 92-99), specificity 21.9% (15.5-29.5), negative predictive value (NPV) 91.4% (76.9-98.1) and positive predictive value (PPV) 46.7% (35.2-47.8). One hundred and twenty-nine (51.8%) had a positive mpMRI using Likert score ⩾4; sensitivity was 80.6% (71.6-87.7), specificity 68.5% (60.3-75.9), NPV 83.3% (75.4-89.5) and PPV 64.3% (55.4-72.6). CONCLUSIONS: In men advised to have a repeat prostate biopsy, prostate mpMRI could be used to safely avoid a repeat biopsy with high sensitivity for clinically significant cancers. However, such a strategy can miss some significant cancers and overdiagnose insignificant cancers depending on the mpMRI score threshold used to define which men should be biopsied

    The Role of Multiparametric MRI and MRI-targeted Biopsy in the Diagnosis of Radiorecurrent Prostate Cancer: An Analysis from the FORECAST Trial

    Get PDF
    BACKGROUND: The role of multiparametric magnetic resonance imaging (MRI) for detecting recurrent prostate cancer after radiotherapy is unclear. OBJECTIVE: To evaluate MRI and MRI-targeted biopsies for detecting intraprostatic cancer recurrence and planning for salvage focal ablation. DESIGN, SETTING, AND PARTICIPANTS: FOcal RECurrent Assessment and Salvage Treatment (FORECAST; NCT01883128) was a prospective cohort diagnostic study that recruited 181 patients with suspected radiorecurrence at six UK centres (2014 to 2018); 144 were included here. INTERVENTION: All patients underwent MRI with 5 mm transperineal template mapping biopsies; 84 had additional MRI-targeted biopsies. MRI scans with Likert scores of 3 to 5 were deemed suspicious. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: First, the diagnostic accuracy of MRI was calculated. Second, the pathological characteristics of MRI-detected and MRI-undetected tumours were compared using the Wilcoxon rank sum test and chi-square test for trend. Third, four biopsy strategies involving an MRI-targeted biopsy alone and with systematic biopsies of one to two other quadrants were studied. Fisher's exact test was used to compare MRI-targeted biopsy alone with the best other strategy for the number of patients with missed cancer and the number of patients with cancer harbouring additional tumours in unsampled quadrants. Analyses focused primarily on detecting cancer of any grade or length. Last, eligibility for focal therapy was evaluated for men with localised (≤T3bN0M0) radiorecurrent disease. RESULTS AND LIMITATIONS: Of 144 patients, 111 (77%) had cancer detected on biopsy. MRI sensitivity and specificity at the patient level were 0.95 (95% confidence interval [CI] 0.92 to 0.99) and 0.21 (95% CI 0.07 to 0.35), respectively. At the prostate quadrant level, 258/576 (45%) quadrants had cancer detected on biopsy. Sensitivity and specificity were 0.66 (95% CI 0.59 to 0.73) and 0.54 (95% CI 0.46 to 0.62), respectively. At the quadrant level, compared with MRI-undetected tumours, MRI-detected tumours had longer maximum cancer core length (median difference 3 mm [7 vs 4 mm]; 95% CI 1 to 4 mm, p < 0.001) and a higher grade group (p = 0.002). Of the 84 men who also underwent an MRI-targeted biopsy, 73 (87%) had recurrent cancer diagnosed. Performing an MRI-targeted biopsy alone missed cancer in 5/73 patients (7%; 95% CI 3 to 15%); with additional systematic sampling of the other ipsilateral and contralateral posterior quadrants (strategy 4), 2/73 patients (3%; 95% CI 0 to 10%) would have had cancer missed (difference 4%; 95% CI -3 to 11%, p = 0.4). If an MRI-targeted biopsy alone was performed, 43/73 (59%; 95% CI 47 to 69%) patients with cancer would have harboured undetected additional tumours in unsampled quadrants. This reduced but only to 7/73 patients (10%; 95% CI 4 to 19%) with strategy 4 (difference 49%; 95% CI 36 to 62%, p < 0.0001). Of 73 patients, 43 (59%; 95% CI 47 to 69%) had localised radiorecurrent cancer suitable for a form of focal ablation. CONCLUSIONS: For patients with recurrent prostate cancer after radiotherapy, MRI and MRI-targeted biopsy, with or without perilesional sampling, will diagnose cancer in the majority where present. MRI-undetected cancers, defined as Likert scores of 1 to 2, were found to be smaller and of lower grade. However, if salvage focal ablation is planned, an MRI-targeted biopsy alone is insufficient for prostate mapping; approximately three of five patients with recurrent cancer found on an MRI-targeted biopsy alone harboured further tumours in unsampled quadrants. Systematic sampling of the whole gland should be considered in addition to an MRI-targeted biopsy to capture both MRI-detected and MRI-undetected disease. PATIENT SUMMARY: After radiotherapy, magnetic resonance imaging (MRI) is accurate for detecting recurrent prostate cancer, with missed cancer being smaller and of lower grade. Targeting a biopsy to suspicious areas on MRI results in a diagnosis of cancer in most patients. However, for every five men who have recurrent cancer, this targeted approach would miss cancers elsewhere in the prostate in three of these men. If further focal treatment of the prostate is planned, random biopsies covering the whole prostate in addition to targeted biopsies should be considered so that tumours are not missed

    Magnetic Resonance Imaging and targeted biopsies compared to transperineal mapping biopsies prior to salvage focal therapy/ablation in localised and metastatic recurrent prostate cancer after radiotherapy. Primary Outcomes from the FORECAST Trial

    Get PDF
    BACKGROUND: Recurrent prostate cancer after radiotherapy occurs in one in five patients. The efficacy of prostate magnetic resonance imaging (MRI) in recurrent cancer has not been established. Furthermore, high-quality data on new minimally invasive salvage focal ablative treatments are needed. OBJECTIVE: To evaluate the role of prostate MRI in detection of prostate cancer recurring after radiotherapy and the role of salvage focal ablation in treating recurrent disease. DESIGN, SETTING, AND PARTICIPANTS: The FORECAST trial was both a paired-cohort diagnostic study evaluating prostate multiparametric MRI (mpMRI) and MRI-targeted biopsies in the detection of recurrent cancer and a cohort study evaluating focal ablation at six UK centres. A total of 181 patients were recruited, with 155 included in the MRI analysis and 93 in the focal ablation analysis. INTERVENTION: Patients underwent choline positron emission tomography/computed tomography and a bone scan, followed by prostate mpMRI and MRI-targeted and transperineal template-mapping (TTPM) biopsies. MRI was reported blind to other tests. Those eligible underwent subsequent focal ablation. An amendment in December 2014 permitted focal ablation in patients with metastases. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Primary outcomes were the sensitivity of MRI and MRI-targeted biopsies for cancer detection, and urinary incontinence after focal ablation. A key secondary outcome was progression-free survival (PFS). RESULTS AND LIMITATIONS: Staging whole-body imaging revealed localised cancer in 128 patients (71%), with involvement of pelvic nodes only in 13 (7%) and metastases in 38 (21%). The sensitivity of MRI-targeted biopsy was 92% (95% confidence interval [CI] 83-97%). The specificity and positive and negative predictive values were 75% (95% CI 45-92%), 94% (95% CI 86-98%), and 65% (95% CI 38-86%), respectively. Four cancer (6%) were missed by TTPM biopsy and six (8%) were missed by MRI-targeted biopsy. The overall MRI sensitivity for detection of any cancer was 94% (95% CI 88-98%). The specificity and positive and negative predictive values were 18% (95% CI 7-35%), 80% (95% CI 73-87%), and 46% (95% CI 19-75%), respectively. Among 93 patients undergoing focal ablation, urinary incontinence occurred in 15 (16%) and five (5%) had a grade ≥3 adverse event, with no rectal injuries. Median follow-up was 27 mo (interquartile range 18-36); overall PFS was 66% (interquartile range 54-75%) at 24 mo. CONCLUSIONS: Patients should undergo prostate MRI with both systematic and targeted biopsies to optimise cancer detection. Focal ablation for areas of intraprostatic recurrence preserves continence in the majority, with good early cancer control. PATIENT SUMMARY: We investigated the role of magnetic resonance imaging (MRI) scans of the prostate and MRI-targeted biopsies in outcomes after cancer-targeted high-intensity ultrasound or cryotherapy in patients with recurrent cancer after radiotherapy. Our findings show that these patients should undergo prostate MRI with both systematic and targeted biopsies and then ablative treatment focused on areas of recurrent cancer to preserve their quality of life. This trial is registered at ClinicalTrials.gov as NCT01883128

    External validation of a risk model predicting failure of salvage focal ablation for prostate cancer

    Get PDF
    OBJECTIVES: To externally validate a published model predicting failure within 2 years after salvage focal ablation in men with localised radiorecurrent prostate cancer using a prospective, UK multicentre dataset. PATIENTS AND METHODS: Patients with biopsy-confirmed ≤T3bN0M0 cancer after previous external beam radiotherapy or brachytherapy were included from the FOcal RECurrent Assessment and Salvage Treatment (FORECAST) trial (NCT01883128; 2014-2018; six centres), and from the high-intensity focussed ultrasound (HIFU) Evaluation and Assessment of Treatment (HEAT) and International Cryotherapy Evaluation (ICE) UK-based registries (2006-2022; nine centres). Eligible patients underwent either salvage focal HIFU or cryotherapy, with the choice based predominantly on anatomical factors. Per the original multivariable Cox regression model, the predicted outcome was a composite failure outcome. Model performance was assessed at 2 years post-salvage with discrimination (concordance index [C-index]), calibration (calibration curve and slope), and decision curve analysis. For the latter, two clinically-reasonable risk threshold ranges of 0.14-0.52 and 0.26-0.36 were considered, corresponding to previously published pooled 2-year recurrence-free survival rates for salvage local treatments. RESULTS: A total of 168 patients were included, of whom 84/168 (50%) experienced the primary outcome in all follow-ups, and 72/168 (43%) within 2 years. The C-index was 0.65 (95% confidence interval 0.58-0.71). On graphical inspection, there was close agreement between predicted and observed failure. The calibration slope was 1.01. In decision curve analysis, there was incremental net benefit vs a 'treat all' strategy at risk thresholds of ≥0.23. The net benefit was therefore higher across the majority of the 0.14-0.52 risk threshold range, and all of the 0.26-0.36 range. CONCLUSION: In external validation using prospective, multicentre data, this model demonstrated modest discrimination but good calibration and clinical utility for predicting failure of salvage focal ablation within 2 years. This model could be reasonably used to improve selection of appropriate treatment candidates for salvage focal ablation, and its use should be considered when discussing salvage options with patients. Further validation in larger, international cohorts with longer follow-up is recommended

    Development and internal validation of prediction models for biochemical failure and composite failure after focal salvage high intensity focused ultrasound for local radiorecurrent prostate cancer : Presentation of risk scores for individual patient prognoses

    No full text
    Purpose Patient selection for focal salvage remains difficult. Therefore, we developed and internally validated prediction models for biochemical failure (BF) and a composite endpoint (CE) following focal salvage high intensity focused ultrasound (HIFU) for radiorecurrent prostate cancer. Materials and methods A prospective HIFU registry identified 150 cases (November 2006–August 2015). Recurrence was assessed with multiparametric magnetic resonance imaging (MRI) combined with template prostate mapping biopsies, targeted biopsies, or systematic transrectal ultrasound-guided biopsies. Metastatic disease was ruled out with a positron emission tomography-computed tomography and a bone scan. Focal salvage HIFU consisted of quadrant-ablation, hemi-ablation, or index-lesion ablation. Cox-regression was used for BF (Phoenix-definition) and CE (BF/MRI+/biopsies+/local or systemic treatment/metastases+/prostate cancer specific mortality+). Internal validation was performed using bootstrap resampling (500 datasets) after which C-statistic and hazard ratios were adjusted. Models were calibrated and risk scores created. Results Median follow-up was 35 months (interquartile range: 22–52). Median biochemical disease-free survival (DFS) was 33 months (95% CI: 23–45). Median CE-free survival was 24 months (95% CI: 21–35). After multivariable analysis, DFS interval after primary radiotherapy, presalvage prostate-specific antigen (PSA), PSA-doubling time, prostatic volume, and T-stage (both MRI based) predicted BF. For the CE, PSA-doubling time was not predictive but additionally, primary Gleason score was. The adjusted C-statistics were 0.68 and 0.64 for BF and CE, respectively. Calibration was accurate until 48 months. The risk scores showed 3 groups, with biochemical DFS of 60%, 35%, and 7% and CE-free survival of 40%, 24%, and 0% at 4 years. Conclusion Our model, once externally validated, could allow for better selection of patients for focal salvage HIFU

    Prostate Imaging Compared to Transperineal Ultrasound-guided biopsy for significant prostate cancer Risk Evaluation (PICTURE): a prospective cohort validating study assessing Prostate HistoScanning.

    Get PDF
    BACKGROUND: Men with negative prostate biopsies or those diagnosed with low-risk or low-volume intermediate-risk prostate cancers often require a second prostate biopsy prior to a treatment decision. Prostate HistoScanning (PHS) is an ultrasound imaging test that might inform prostate biopsy in such men. METHODS: PICTURE was a prospective, paired-cohort validating trial to assess the diagnostic accuracy of imaging in men requiring a further biopsy (clinicaltrials.gov, NCT01492270) (11 January 2012-29 January 2014). We enrolled 330 men who had undergone a prior TRUS biopsy but where diagnostic uncertainty remained. All eligible men underwent PHS and transperineal template prostate mapping (TTPM) biopsy (reference standard). Men were blinded to the imaging results until after undergoing TTPM biopsies. We primarily assessed the ability of PHS to rule out clinically significant prostate (negative predictive value [NPV] and sensitivity) for a target histological condition of Gleason ≥4+3 and/or a cancer core length (MCCL) ≥6 mm. We also assessed the role of visually estimated PHS-targeted biopsies. RESULTS: Of the 330 men enrolled, 249 underwent both PHS and TTPM biopsy. Mean (SD) age was 62 (7) years, median (IQR) PSA 6.8 (4.98-9.50) ng/ml, median (IQR) number of previous biopsies 1 (1-2) and mean (SD) gland size 37 (15.5) ml. One hundred and forty six (59%) had no clinically significant cancer. PHS classified 174 (70%) as suspicious. Sensitivity was 70.3% (95% CI 59.8-79.5) and NPV 41.3% (95% CI 27.0-56.8). Specificity and positive predictive value (PPV) were 14.7% (95% CI 9.1-22.0) and 36.8% (95% CI 29.6-44.4), respectively. In all, 213/220 had PHS suspicious areas targeted with targeting sensitivity 13.6% (95% CI 7.3-22.6), specificity 97.6% (95% CI 93.1-99.5), NPV 61.6% (95% CI 54.5-68.4) and PPV 80.0% (95% CI 51.9-95.7). CONCLUSIONS: PHS is not a useful test in men seeking risk stratification following initial prostate biopsy

    HaEmaturia After Transurethral resection of bladder Tumour (HEATT): A multicentre, regional collaborative analysis of factors associated with emergency re-admission with haematuria following TURBT

    No full text
    Objective: To calculate the re-admission rate with haematuria within 30 days of elective transurethral resection of bladder tumour (TURBT), and identify factors associated with this. Materials and Methods: This was a multicentre, retrospective audit, identifying all adult patients over the age of 16 who underwent elective TURBT between 1 September and 30 November 2019. Data were collected from medical records and operation notes on patient demographics, intra-operative factors and post-operative management. Primary outcome measure was the proportion of patients emergently re-admitted with haematuria. Secondary outcome measures were the re-operation rate for haematuria, and the rate of new acute thrombotic event (TE). Fisher’s exact test was used to calculate p values within subgroups for re-admission rates. Results: 443 patients from 12 hospitals were included. Median age was 75 years (17–99). 15 patients (3.4%) were re-admitted with haematuria. Subgroup analysis demonstrated higher rate of re-admission for pre-existing antithrombotic agents (ATAs) (2.0% vs. 6.1%, p = 0.046), increased for non-Aspirin ATAs (10.5%, p = 0.0015). 52% of non-Aspirin ATAs were restarted within 48 hours of surgery; post-operative plan for restarting was not documented in 22.1%. One patient (0.23%) developed acute TE (pulmonary embolus). Conclusion: Pre-existing use of non-Aspirin ATAs is associated with increased risk of post-TURBT haematuria, with variable practice in post-operative recommencement. Level of evidence: Level

    Immunohistochemical biomarker validation in highly selective needle biopsy microarrays derived from mpMRI-characterized prostates.

    No full text
    INTRODUCTION: Diagnosing prostate cancer routinely involves tissue biopsy and increasingly image guided biopsy using multiparametric MRI (mpMRI). Excess tissue after diagnosis can be used for research to improve the diagnostic pathway and the vertical assembly of prostate needle biopsy cores into tissue microarrays (TMAs) allows the parallel immunohistochemical (IHC) validation of cancer biomarkers in routine diagnostic specimens. However, tissue within a biopsy core is often heterogeneous and cancer is not uniformly present, resulting in needle biopsy TMAs that suffer from highly variable cancer detection rates that complicate parallel biomarker validation. MATERIALS AND METHODS: The prostate cores with the highest tumor burden (in terms of Gleason score and/or maximum cancer core length) were obtained from 249 patients in the PICTURE trial who underwent transperineal template prostate mapping (TPM) biopsy at 5 mm intervals preceded by mpMRI. From each core, 2 mm segments containing tumor or benign tissue (as assessed on H&E pathology) were selected, excised and embedded vertically into a new TMA block. TMA sections were then IHC-stained for the routinely used prostate cancer biomarkers PSA, PSMA, AMACR, p63, and MSMB and assessed using the h-score method. H-scores in patient matched malignant and benign tissue were correlated with the Gleason grade of the original core and the MRI Likert score for the sampled prostate area. RESULTS: A total of 2240 TMA cores were stained and IHC h-scores were assigned to 1790. There was a statistically significant difference in h-scores between patient matched malignant and adjacent benign tissue that is independent of Likert score. There was no association between the h-scores and Gleason grade or Likert score within each of the benign or malignant groups. CONCLUSION: The construction of highly selective TMAs from prostate needle biopsy cores is possible. IHC data obtained through this method are highly reliable and can be correlated with imaging. IHC expression patterns for PSA, PSMA, AMACR, p63, and MSMB are distinct in malignant and adjacent benign tissue but did not correlate with mpMRI Likert score
    corecore