31 research outputs found

    Calculating principal eigen-functions of non-negative integral kernels: particle approximations and applications

    Get PDF
    Often in applications such as rare events estimation or optimal control it is required that one calculates the principal eigen-function and eigen-value of a non-negative integral kernel. Except in the finite-dimensional case, usually neither the principal eigen-function nor the eigen-value can be computed exactly. In this paper, we develop numerical approximations for these quantities. We show how a generic interacting particle algorithm can be used to deliver numerical approximations of the eigen-quantities and the associated so-called "twisted" Markov kernel as well as how these approximations are relevant to the aforementioned applications. In addition, we study a collection of random integral operators underlying the algorithm, address some of their mean and path-wise properties, and obtain LrL_{r} error estimates. Finally, numerical examples are provided in the context of importance sampling for computing tail probabilities of Markov chains and computing value functions for a class of stochastic optimal control problems.Comment: 38 pages, 4 figures, 1 table; to appear in Mathematics of Operations Researc

    Distributed Maximum Likelihood for Simultaneous Self-localization and Tracking in Sensor Networks

    Full text link
    We show that the sensor self-localization problem can be cast as a static parameter estimation problem for Hidden Markov Models and we implement fully decentralized versions of the Recursive Maximum Likelihood and on-line Expectation-Maximization algorithms to localize the sensor network simultaneously with target tracking. For linear Gaussian models, our algorithms can be implemented exactly using a distributed version of the Kalman filter and a novel message passing algorithm. The latter allows each node to compute the local derivatives of the likelihood or the sufficient statistics needed for Expectation-Maximization. In the non-linear case, a solution based on local linearization in the spirit of the Extended Kalman Filter is proposed. In numerical examples we demonstrate that the developed algorithms are able to learn the localization parameters.Comment: shorter version is about to appear in IEEE Transactions of Signal Processing; 22 pages, 15 figure

    Curvature Aligned Simplex Gradient: Principled Sample Set Construction For Numerical Differentiation

    Full text link
    The simplex gradient, a popular numerical differentiation method due to its flexibility, lacks a principled method by which to construct the sample set, specifically the location of function evaluations. Such evaluations, especially from real-world systems, are often noisy and expensive to obtain, making it essential that each evaluation is carefully chosen to reduce cost and increase accuracy. This paper introduces the curvature aligned simplex gradient (CASG), which provably selects the optimal sample set under a mean squared error objective. As CASG requires function-dependent information often not available in practice, we additionally introduce a framework which exploits a history of function evaluations often present in practical applications. Our numerical results, focusing on applications in sensitivity analysis and derivative free optimization, show that our methodology significantly outperforms or matches the performance of the benchmark gradient estimator given by forward differences (FD) which is given exact function-dependent information that is not available in practice. Furthermore, our methodology is comparable to the performance of central differences (CD) that requires twice the number of function evaluations.Comment: 31 Pages, 5 Figures, Submitted to IMA Numerical Analysi

    Calculating principal eigen-functions of non-negative integral kernels:particle approximations and applications

    Get PDF

    Some recent developments in Markov Chain Monte Carlo for cointegrated time series

    Get PDF
    We consider multivariate time series that exhibit reduced rank cointegration, which means a lower dimensional linear projection of the process becomes stationary. We will review recent suitable Markov Chain Monte Carlo approaches for Bayesian inference such as the Gibbs sampler of [41] and the Geodesic Hamiltonian Monte Carlo method of [3]. Then we will propose extensions that can allow the ideas in both methods to be applied for cointegrated time series with non-Gaussian noise. We illustrate the efficiency and accuracy of these extensions using appropriate numerical experiments
    corecore