23 research outputs found

    Defining novel functions for cerebrospinal fluid in ALS pathophysiology

    Get PDF
    Despite the considerable progress made towards understanding ALS pathophysiology, several key features of ALS remain unexplained, from its aetiology to its epidemiological aspects. The glymphatic system, which has recently been recognised as a major clearance pathway for the brain, has received considerable attention in several neurological conditions, particularly Alzheimer's disease. Its significance in ALS has, however, been little addressed. This perspective article therefore aims to assess the possibility of CSF contribution in ALS by considering various lines of evidence, including the abnormal composition of ALS-CSF, its toxicity and the evidence for impaired CSF dynamics in ALS patients. We also describe a potential role for CSF circulation in determining disease spread as well as the importance of CSF dynamics in ALS neurotherapeutics. We propose that a CSF model could potentially offer additional avenues to explore currently unexplained features of ALS, ultimately leading to new treatment options for people with ALS.</p

    Transcriptional regulation of indoleamine 2,3-dioxygenase (IDO) by tryptophan and its analogue: Down-regulation of the indoleamine 2,3-dioxygenase (IDO) transcription by tryptophan and its analogue

    Full text link
    Indoleamine 2,3-dioxygenase (IDO; EC 1.13.11.42) is a rate-limiting enzyme involved in the catabolism of tryptophan, which is an essential amino acid. It is induced under pathological conditions, such as the presence of viral infections or tumour cells. This enzyme is induced by IFN-Ī³ in the mouse rectal carcinoma cell line CMT-93. It is known that both 1-methyl-l-tryptophan (1-MT) and methylthiohydantoin-dl-tryptophan (MTH-trp) are tryptophan analogues, and are authentic inhibitors of the enzymatic activity of IDO. In this study, we examined the effects of both 1-MT and MTH-trp on the IFN-Ī³ inducible IDO expression of CMT-93. As a result, the IFN-Ī³ inducible IDO mRNA and the protein levels in CMT-93 were suppressed by 1-MT and MTH-trp, independently. Moreover, tryptophan (Trp), as a substrate of IDO, also suppressed IDO induction by IFN-Ī³ at the transcriptional level. These results suggest that 1-MT and MTH-trp are as inhibitors of IDO enzymatic activity, and Trp suppresses IDO induction by IFN-Ī³ at the transcriptional level
    corecore