22 research outputs found

    Inhibition of Amino Acids Influx into Proximal Tubular Cells Improves Lysosome Function in Diabetes

    Get PDF
    Background Inhibition of glucose influx into proximal tubular cells (PTCs) by sodium–glucose cotransporter 2 inhibitors revealed prominent therapeutic effects on diabetic kidney disease. Collectrin (CLTRN) serves as a chaperone for the trafficking of neutral amino acid (AA) transporters in the apical membranes of PTCs. We investigated the beneficial effects of reduced influx of AAs into PTCs in diabetes and obesity model of Cltrn−/y mice. Methods Cltrn+/y and Cltrn−/y mice at age 5 weeks were assigned to standard diet and streptozotocin and high-fat diet (STZ-HFD)–treated groups. Results At age 22–23 weeks, body weight and HbA1c levels significantly increased in STZ-HFD-Cltrn+/y compared with standard diet-Cltrn+/y; however, they were not altered in STZ-HFD-Cltrn−/y compared with STZ-HFD-Cltrn+/y. At age 20 weeks, urinary albumin creatinine ratio was significantly reduced in STZ-HFD-Cltrn−/y compared with STZ-HFD-Cltrn+/y. Under the treatments with STZ and HFD, the Cltrn gene deficiency caused significant increase in urinary concentration of AAs such as Gln, His, Gly, Thr, Tyr, Val, Trp, Phe, Ile, Leu, and Pro. In PTCs in STZ-HFD-Cltrn+/y, the enlarged lysosomes with diameter of 10 μm or more were associated with reduced autolysosomes, and the formation of giant lysosomes was prominently suppressed in STZ-HFD-Cltrn−/y. Phospho-mTOR and inactive form of phospho-transcription factor EB were reduced in STZ-HFD-Cltrn−/y compared with STZ-HFD-Cltrn+/y. Conclusions The reduction of AAs influx into PTCs inactivated mTOR, activated transcription factor EB, improved lysosome function, and ameliorated vacuolar formation of PTCs in STZ-HFD-Cltrn−/y mice

    Podocyte autophagy is associated with foot process effacement and proteinuria in patients with minimal change nephrotic syndrome

    Get PDF
    Autophagy is a cellular mechanism involved in the bulk degradation of proteins and turnover of organelle. Several studies have shown the significance of autophagy of the renal tubular epithelium in rodent models of tubulointerstitial disorder. However, the role of autophagy in the regulation of human glomerular diseases is largely unknown. The current study aimed to demonstrate morphological evidence of autophagy and its association with the ultrastructural changes of podocytes and clinical data in patients with idiopathic nephrotic syndrome, a disease in which patients exhibit podocyte injury. The study population included 95 patients, including patients with glomerular disease (minimal change nephrotic syndrome [MCNS], n = 41; idiopathic membranous nephropathy [IMN], n = 37) and 17 control subjects who underwent percutaneous renal biopsy. The number of autophagic vacuoles and the grade of foot process effacement (FPE) in podocytes were examined by electron microscopy (EM). The relationships among the expression of autophagic vacuoles, the grade of FPE, and the clinical data were determined. Autophagic vacuoles were mainly detected in podocytes by EM. The microtubule-associated protein 1 light chain 3 (LC3)-positive area was co-localized with the Wilms tumor 1 (WT1)-positive area on immunofluorescence microscopy, which suggested that autophagy occurred in the podocytes of patients with MCNS. The number of autophagic vacuoles in the podocytes was significantly correlated with the podocyte FPE score (r = -0.443, p = 0.004), the amount of proteinuria (r = 0.334, p = 0.033), and the level of serum albumin (r = -0.317, p = 0.043) in patients with MCNS. The FPE score was a significant determinant for autophagy after adjusting for the age in a multiple regression analysis in MCNS patients (p = 0.0456). However, such correlations were not observed in patients with IMN or in control subjects. In conclusion, the results indicated that the autophagy of podocytes is associated with FPE and severe proteinuria in patients with MCNS. The mechanisms underlying the activation of autophagy in association with FPE in podocytes should be further investigated in order to elucidate the pathophysiology of MCNS

    アルギン酸カルシウム繊維の調製と物性評価

    Get PDF
    Calcium alginate fibers were prepared by drying the fibroid gel made by ejecting the sodium alginate solution from a needle of a syringe to calcium chloride solution. The shapes of the fibers were observed, and physical properties such as the thickness and the tensile strength were evaluated. It was shown that according to the conditions of drying the fibroid gel, the shapes of the fibers were altered. For example, the structure like the joint of bamboo was formed by drying the gel put levelly on the waste paper. Concentration of the sodium alginate solution influenced the tensile strength of the fibers, but the thickness

    A Patient with Type 3 Autoimmune Polyglandular Syndrome who Developed Systemic Lupus Erythematosus 8 years after the Diagnosis of Autoimmune Hepatitis

    Get PDF
    Eight years prior to her present admission, a 61-year-old Japanese woman was diagnosed with autoimmune hepatitis, slowly progressive insulin-dependent diabetes mellitus, and chronic thyroiditis; she had been treated with oral prednisolone (PSL). After she suddenly discontinued PSL, she newly developed systemic lupus erythematosus. A combination therapy of oral PSL and intravenous cyclophosphamide resulted in remission. She was finally diagnosed with autoimmune polyglandular syndrome (APS) type 3 (3A ,3B, 3D), complicated with four different autoimmune diseases. Since patients with type 3 APS may present many manifestations over a long period of time, they should be carefully monitored

    Waterlogged Conditions Influence the Nitrogen, Phosphorus, Potassium, and Sugar Distribution in Sago Palm (<i>Metroxylon sagu</i> Rottb.) at Seedling Stages

    No full text
    Sago palm (Metroxylon sagu Rottb.) grows in well-drained mineral soil and in peatland with high groundwater levels until complete submersion. However, the published information on nutrient uptake and carbohydrate content in sago palms growing under waterlogging remains unreported. This experiment observed sago palm growth performance under normal soil conditions (non-submerged conditions) as a control plot and extended waterlogged conditions. Several parameters were analyzed: Plant morphological growth traits, nitrogen, phosphorus, potassium, and sugar concentration in the plant organ, including sucrose, glucose, starch, and non-structural carbohydrate. The analysis found that sago palm morphological growth traits were not significantly affected by extended waterlogging. However, waterlogging reduced carbohydrate levels in the upper part of the sago palm, especially the petiole, and increased sugar levels, especially glucose, in roots. Waterlogging also reduced N concentration in roots and leaflets and P in petioles. The K level was independent of waterlogging as the sago palm maintained a sufficient level in all of the plant organs. Long duration waterlogging may reduce the plant’s economic value as the starch level in the trunk decreases, although sago palm can grow while waterlogged

    Serum sCD40L and IL-31 in Association with Early Phase of IgA Nephropathy

    Get PDF
    Background: IgA nephropathy (IgAN) is a major cause of chronic glomerulonephritis worldwide. T cell dysregulation has been reported to contribute to the pathogenesis of IgAN. Methods We measured a broad range of Th1, Th2 and Th17 cytokines in the serum of IgAN patients. We searched for significant cytokines, which were associated with clinical parameters and histological scores in IgAN patients. Results: Among 15 cytokines, the levels of soluble CD40L (sCD40L) and IL-31 were higher in IgAN patients and were significantly associated with a higher estimated glomerular filtration rate (eGFR), a lower urinary protein to creatinine ratio (UPCR), and milder tubulointerstitial lesions (i.e., the early phase of IgAN). Multivariate analysis revealed that serum sCD40L was an independent determinant of a lower UPCR after adjustment for age, eGFR, and mean blood pressure (MBP). CD40, a receptor of sCD40L, has been reported to be upregulated on mesangial cells in IgAN. The sCD40L/CD40 interaction may directly induce inflammation in mesangial areas and may therefore be involved in the development of IgAN. Conclusions: The present study demonstrated the significance of serum sCD40L and IL-31 in the early phase of IgAN. Serum sCD40L may be a marker of the beginning of inflammation in IgAN

    Urine Trefoil Factors as Prognostic Biomarkers in Chronic Kidney Disease

    No full text
    Introduction. Trefoil factor family (TFF) peptides are increased in serum and urine in patients with chronic kidney disease (CKD). However, whether the levels of TFF predict the progression of CKD remains to be elucidated. Methods. We determined the TFF levels using peptide-specific ELISA in spot urine samples and performed a prospective cohort study. The association between the levels of urine TFFs and other urine biomarkers as well as the renal prognosis was analyzed in 216 CKD patients (mean age: 53.7 years, 47.7% female, 56.9% with chronic glomerulonephritis, and mean eGFR: 58.5 ml/min/1.73 m2). Results. The urine TFF1 and TFF3 levels significantly increased with the progression of CKD stages, but not the urine TFF2 levels. The TFF1 and TFF3 peptide levels predicted the progression of CKD ≥ stage 3b by ROC analysis (AUC 0.750 and 0.879, resp.); however, TFF3 alone predicted CKD progression in a multivariate logistic regression analysis (odds ratio 3.854, 95% confidence interval 1.316–11.55). The Kaplan-Meier survival curves demonstrated that patients with a higher TFF1 and TFF3 alone, or in combination with macroalbuminuria, had a significantly worse renal prognosis. Conclusion. The data suggested that urine TFF peptides are associated with renal progression and the outcomes in patients with CKD

    Podocyte autophagy is associated with foot process effacement and proteinuria in patients with minimal change nephrotic syndrome

    No full text
    Autophagy is a cellular mechanism involved in the bulk degradation of proteins and turnover of organelle. Several studies have shown the significance of autophagy of the renal tubular epithelium in rodent models of tubulointerstitial disorder. However, the role of autophagy in the regulation of human glomerular diseases is largely unknown. The current study aimed to demonstrate morphological evidence of autophagy and its association with the ultrastructural changes of podocytes and clinical data in patients with idiopathic nephrotic syndrome, a disease in which patients exhibit podocyte injury. The study population included 95 patients, including patients with glomerular disease (minimal change nephrotic syndrome [MCNS], n = 41; idiopathic membranous nephropathy [IMN], n = 37) and 17 control subjects who underwent percutaneous renal biopsy. The number of autophagic vacuoles and the grade of foot process effacement (FPE) in podocytes were examined by electron microscopy (EM). The relationships among the expression of autophagic vacuoles, the grade of FPE, and the clinical data were determined. Autophagic vacuoles were mainly detected in podocytes by EM. The microtubule-associated protein 1 light chain 3 (LC3)-positive area was co-localized with the Wilms tumor 1 (WT1)-positive area on immunofluorescence microscopy, which suggested that autophagy occurred in the podocytes of patients with MCNS. The number of autophagic vacuoles in the podocytes was significantly correlated with the podocyte FPE score (r = -0.443, p = 0.004), the amount of proteinuria (r = 0.334, p = 0.033), and the level of serum albumin (r = -0.317, p = 0.043) in patients with MCNS. The FPE score was a significant determinant for autophagy after adjusting for the age in a multiple regression analysis in MCNS patients (p = 0.0456). However, such correlations were not observed in patients with IMN or in control subjects. In conclusion, the results indicated that the autophagy of podocytes is associated with FPE and severe proteinuria in patients with MCNS. The mechanisms underlying the activation of autophagy in association with FPE in podocytes should be further investigated in order to elucidate the pathophysiology of MCNS
    corecore