128 research outputs found
Simulation of Team Cooperation Processes in En-Route Air Traffic Control
Recent increase in air traffic demands makes the role of Air Traffic Control (ATC), which supports safety and efficiency of aviation, more important than ever. As aviation technologies have progressed, automation and computer supports are being introduced in cockpits, but ATC still heavily relies on human expertise of Air Traffic Control Officers (ATCOs). It is therefore necessary to understand ATC tasks from a viewpoint of ATCOsâ cognitive behaviour in order to assess and improve task schemes and training programs for ATC
Reevaluation of analytical methods for photogenerated singlet oxygen
The aim of the present study is to compare different analytical methods for singlet oxygen and to discuss an appropriate way to evaluate the yield of singlet oxygen photogenerated from photosensitizers. Singlet oxygen photogenerated from rose bengal was evaluated by electron spin resonance analysis using sterically hindered amines, spectrophotometric analysis of 1,3-diphenylisobenzofuran oxidation, and analysis of fluorescent probe (Singlet Oxygen Sensor Green®). All of the analytical methods could evaluate the relative yield of singlet oxygen. The sensitivity of the analytical methods was 1,3-diphenylisobenzofuran < electron spin resonance < Singlet Oxygen Sensor Green®. However, Singlet Oxygen Sensor Green® could be used only when the concentration of rose bengal was very low (<1 µM). In addition, since the absorption spectra of 1,3-diphenylisobenzofuran is considerably changed by irradiation of 405 nm laser, photosensitizers which are excited by light with a wavelength of around 400 nm such as hematoporphyrin cannot be used in the 1,3-diphenylisobenzofuran oxidation method. On the other hand, electron spin resonance analysis using a sterically hindered amine, especially 2,2,6,6-tetramethyl-4-piperidinol and 2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide, had proper sensitivity and wide detectable range for the yield of photogenerated singlet oxygen. Therefore, in photodynamic therapy, it is suggested that the relative yield of singlet oxygen generated by various photosensitizers can be evaluated properly by electron spin resonance analysis
Vortices on Orbifolds
The Abelian and non-Abelian vortices on orbifolds are investigated based on
the moduli matrix approach, which is a powerful method to deal with the BPS
equation. The moduli space and the vortex collision are discussed through the
moduli matrix as well as the regular space. It is also shown that a quiver
structure is found in the Kahler quotient, and a half of ADHM is obtained for
the vortex theory on the orbifolds as the case before orbifolding.Comment: 25 pages, 4 figures; references adde
Bactericidal Action of Photogenerated Singlet Oxygen from Photosensitizers Used in Plaque Disclosing Agents
Photodynamic therapy (PDT) has been suggested as an efficient clinical approach for the treatment of dental plaque in the field of dental care. In PDT, once the photosensitizer is irradiated with light of a specific wavelength, it transfers the excitation energy to molecular oxygen, which gives rise to singlet oxygen., a major causative pathogen of caries, followed by erythrosine and phloxine, both of which showed activity similar to each other. One of the reasons for the discrepancy between the singlet oxygen generating ability and bactericidal activity was the incorporation efficiency of the photosensitizers into the bacterial cells. The incorporation rate of rose bengal was the highest among the three photosensitizers examined in the present study, likely leading to the highest bactericidal activity. Meanwhile, the addition of L-histidine, a singlet oxygen quencher, cancelled the bactericidal activity of any of the three photoactivated photosensitizers, proving that singlet oxygen was responsible for the bactericidal action.It is strongly suggested that rose bengal is a suitable photosensitizer for the plaque disclosing agents as compared to the other two photosensitizers, phloxine and erythrosine, when used for PDT
Estimation of Gas Permeation Characteristics of Ultrahigh Barrier Edge Sealing Materials from Asymptotic Solution of Diffusion Equation
Materials and structures for water vapor barrier sealing are now actively studied, as the commercialization of organic electronic devices has become a reality. In this paper, we focus on the edge sealing barriers, in which diffusion plays an essential role. In the past, the diffusion-limited gas barrier properties were analyzed in the steady-state approximation, which is never reached within the device lifetime in the application for organic electronics. We analyze them using a simple analytical model. The diffusion before reaching the steady state is a strongly non-linear process, as is well known, and the length scale of approximately 1–10 mm is very important when a practical polymer resin is used for the edge seal
- …