616 research outputs found

    Advances in epilepsy: new perspectives on new-onset epilepsy, comorbidities, and pharmacotherapy

    Get PDF
    The purpose of this brief article is to review old concepts of the significance of acute symptomatic seizures, the impact of psychiatric comorbidities on the response of pharmacologic and surgical treatments of the seizure disorder, and the importance of factoring comorbid medical comorbidities into the choice of antiepileptic drugs (AEDs). In addition, this article provides an update on the latest data on the teratogenic effects of AEDs and reviews the most relevant results of a recent practice guideline on pregnancy issues in women with epilepsy. The article closes with a review of the latest advances in the therapeutic effects of first- and second-generation AEDs

    Mood disorder and epilepsy: a neurobiologic perspective of their relationship

    Get PDF
    Mood disorders are the most frequent psychiatric comorbidity in epilepsy, and in particular in temporal lobe epilepsy. For a long time, depressive disorders were considered to be the expression of a reactive process to the obstacles of a life with epilepsy Data obtained in the last two decades, however, have demonstrated biochemical, neuropathoiogical, and neurophysioiogic changes mediating the development of mood disorders, which in fact can be tested in animal models. Furthermore, there is also evidence that mood disorders and epilepsy have a complex relationship which is bidirectional; that is, not only are patients with epilepsy at greater risk of developing depression, but patients with depression have a higher risk of developing epilepsy. Such a relationship can only be explained by the existence of common pathogenic mechanisms that are operant in both conditions. These include changes in neurotransmitters, such as serotonin, norepinephrine, glutamate, and γ-aminobutyric acid. Such a bidirectional relationship also appears to have important clinical consequences. Indeed, patients with a history of mood disorders are twice as likely to develop pharmacoresistant epilepsy as those without such a history. These data are reviewed in this article

    Quality of life and mood in patients with medically intractable epilepsy treated with targeted responsive neurostimulation

    Get PDF
    AbstractPurposeThe primary efficacy and safety measures from a trial of responsive neurostimulation for focal epilepsy were previously published. In this report, the findings from the same study are presented for quality of life, which was a supportive analysis, and for mood, which was assessed as a secondary safety endpoint.MethodsThe study was a multicenter randomized controlled double-blinded trial of responsive neurostimulation in 191 patients with medically resistant focal epilepsy. During a 4-month postimplant blinded period, patients were randomized to receive responsive stimulation or sham stimulation, after which all patients received responsive neurostimulation in open label to complete 2years. Quality of life (QOL) and mood surveys were administered during the baseline period, at the end of the blinded period, and at year 1 and year 2 of the open label period.ResultsThe treatment and sham groups did not differ at baseline. Compared with baseline, QOL improved in both groups at the end of the blinded period and also at 1year and 2years, when all patients were treated. At 2years, 44% of patients reported meaningful improvements in QOL, and 16% reported declines. There were no overall adverse changes in mood or in suicidality across the study. Findings were not related to changes in seizures and antiepileptic drugs, and patients with mesial temporal seizure onsets and those with neocortical seizure onsets both experienced improvements in QOL.ConclusionsTreatment with targeted responsive neurostimulation does not adversely affect QOL or mood and may be associated with improvements in QOL in patients, including those with seizures of either mesial temporal origin or neocortical origin

    A Comparison of Four Treatments for Generalized Convulsive Status Epilepticus

    Get PDF
    ABSTRACT Background and Methods Although generalized convulsive status epilepticus is a life-threatening emergency, the best initial drug treatment is uncertain. We conducted a five-year randomized, doubleblind, multicenter trial of four intravenous regimens: diazepam (0.15 mg per kilogram of body weight) followed by phenytoin (18 mg per kilogram), lorazepam (0.1 mg per kilogram), phenobarbital (15 mg per kilogram), and phenytoin (18 mg per kilogram). Patients were classified as having either overt generalized status epilepticus (defined as easily visible generalized convulsions) or subtle status epilepticus (indicated by coma and ictal discharges on the electroencephalogram, with or without subtle convulsive movements such as rhythmic muscle twitches or tonic eye deviation). Treatment was considered successful when all motor and electroencephalographic seizure activity ceased within 20 minutes after the beginning of the drug infusion and there was no return of seizure activity during the next 40 minutes. Analyses were performed with data on only the 518 patients with verified generalized convulsive status epilepticus as well as with data on all 570 patients who were enrolled. Results Three hundred eighty-four patients had a verified diagnosis of overt generalized convulsive status epilepticus. In this group, lorazepam was successful in 64.9 percent of those assigned to receive it, phenobarbital in 58.2 percent, diazepam and phenytoin in 55.8 percent, and phenytoin in 43.6 percent (P=0.02 for the overall comparison among the four groups). Lorazepam was significantly superior to phenytoin in a pairwise comparison (P=0.002). Among the 134 patients with a verified diagnosis of subtle generalized convulsive status epilepticus, no significant differences among the treatments were detected (range of success rates, 7.7 to 24.2 percent). In an intention-to-treat analysis, the differences among treatment groups were not significant, either among the patients with overt status epilepticus (P=0.12) or among those with subtle status epilepticus (P=0.91). There were no differences among the treatments with respect to recurrence during the 12- hour study period, the incidence of adverse reactions, or the outcome at 30 days. Conclusions As initial intravenous treatment for overt generalized convulsive status epilepticus, lorazepam is more effective than phenytoin. Although lorazepam is no more efficacious than phenobarbital or diazepam and phenytoin, it is easier to use. (N Engl J Med 1998;339:792-8.

    Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data

    Get PDF
    We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo run in the detector frequency band [10,2000] Hz[10,2000]\rm~Hz have been used. No significant detection was found and 95%\% confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about 7.6×10267.6\times 10^{-26} at 142 Hz\simeq 142\rm~Hz. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass -- boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC.Comment: 25 pages, 5 figure

    Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

    Get PDF

    A Joint Fermi-GBM and Swift-BAT Analysis of Gravitational-wave Candidates from the Third Gravitational-wave Observing Run

    Get PDF
    We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift- BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers

    Constraints on the cosmic expansion history from GWTC-3

    Get PDF
    We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter H(z)H(z), including its current value, the Hubble constant H0H_0. Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z)H(z). The source mass distribution displays a peak around 34M34\, {\rm M_\odot}, followed by a drop-off. Assuming this mass scale does not evolve with redshift results in a H(z)H(z) measurement, yielding H0=687+12kms1Mpc1H_0=68^{+12}_{-7} {\rm km\,s^{-1}\,Mpc^{-1}} (68%68\% credible interval) when combined with the H0H_0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0H_0 estimate from GWTC-1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0=686+8kms1Mpc1H_0=68^{+8}_{-6} {\rm km\,s^{-1}\,Mpc^{-1}} with the galaxy catalog method, an improvement of 42% with respect to our GWTC-1 result and 20% with respect to recent H0H_0 studies using GWTC-2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0H_0) is the well-localized event GW190814

    Search for subsolar-mass binaries in the first half of Advanced LIGO's and Advanced Virgo's third observing run

    Get PDF
    We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 M⊙ and 1.0 M⊙ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio q ≥ 0.1. We do not report any gravitational-wave candidates. The most significant trigger has a false alarm rate of 0.14 yr-1. This implies an upper limit on the merger rate of subsolar binaries in the range [220-24200] Gpc-3 yr-1, depending on the chirp mass of the binary. We use this upper limit to derive astrophysical constraints on two phenomenological models that could produce subsolar-mass compact objects. One is an isotropic distribution of equal-mass primordial black holes. Using this model, we find that the fraction of dark matter in primordial black holes in the mass range 0.2 M &lt; mPBH &lt; 1.0 M⊙ is fPBH ≡ ΩPBH/ΩDM ≤ 6%. This improves existing constraints on primordial black hole abundance by a factor of ∼3. The other is a dissipative dark matter model, in which fermionic dark matter can collapse and form black holes. The upper limit on the fraction of dark matter black holes depends on the minimum mass of the black holes that can be formed: the most constraining result is obtained at Mmin = 1 M⊙, where fDBH ≡ ΩDBH/ΩDM ≤ 0.003%. These are the first constraints placed on dissipative dark models by subsolar-mass analyses.<br/
    corecore