5 research outputs found

    Cu based Metal Organic Framework (Cu-MOF) for electrocatalytic hydrogen evolution reaction

    Get PDF
    Hydrogen production using novel catalysts is regarded as one of the most needed technology for the future economic needs and water splitting to give H2 gas, which is a challenging task for large-scale production. This work reports the synthesis of Meso-Cu-BTC metal organic framework and further used for understanding its role in electrochemical hydrogen evolution reaction (HER) in 1 M NaOH solution. Meso-Cu-BTC electrocatalyst showed a less overpotential of 89.32 mV and an onset potential of 25 mV with an appreciable current density. Results show a low Tafel slope of 33.41 mVdec−1 and long-term durability. Thus, the overall results show that Meso-Cu-BTC acted as a good candidate for electrocatalysis towards hydrogen evolution

    Highly Porous MIL-100(Fe) for the Hydrogen Evolution Reaction (HER) in Acidic and Basic Media

    No full text
    The present study reports the synthesis of a porous Fe-based MOF named MIL-100(Fe) by a modified hydrothermal method without the HF process. The synthesis gave a high surface area with the specific surface area calculated to be 2551 m2 g–1 and a pore volume of 1.407 cm3 g–1 with an average pore size of 1.103 nm. The synthesized electrocatalyst having a high surface area is demonstrated as an excellent electrocatalyst for the hydrogen evolution reaction investigated in both acidic and alkaline media. As desired, the electrochemical results showed low Tafel slopes (53.59 and 56.65 mV dec–1), high exchange current densities (76.44 and 72.75 mA cm–2), low overpotentials (148.29 and 150.57 mV), and long-term stability in both media, respectively. The high activity is ascribed to the large surface area of the synthesized Fe-based metal–organic framework with porous nature
    corecore