7 research outputs found

    Coupled-channel pseudo-potential description of the Feshbach resonance in two dimensions

    Full text link
    We derive pseudo-potentials that describe the scattering between two particles in two spatial dimensions for any partial wave m, whose scattering strength is parameterized in terms of the m-dependent phase shift. Using our m=0 pseudo-potential, we develop a coupled channel model with 2D zero-range interactions, which describes the two-body physics across a Feshbach resonance. Our model predicts the scattering length, the binding energy and the "closed channel molecular fraction" of two particles; these observables can be measured in experiments on ultracold quasi-2D atomic Bose and Fermi gases with present-day technology.Comment: 4 pages, 3 figure

    Low-energy resonances and bound states of aligned bosonic and fermionic dipoles

    Full text link
    The low-energy scattering properties of two aligned identical bosonic and identical fermionic dipoles are analyzed. Generalized scattering lengths are determined as functions of the dipole moment and the scattering energy. Near resonance, where a new bound state is being pulled in, all non-vanishing generalized scattering lengths diverge, with the a00a_{00} and a11a_{11} scattering lengths being dominant for identical bosons and identical fermions, respectively, near both broad and narrow resonances. Implications for the energy spectrum and the eigenfunctions of trapped two-dipole systems and for pseudo-potential treatments are discussed.Comment: 4 pages, 4 figure

    Pseudo-potential treatment of two aligned dipoles under external harmonic confinement

    Get PDF
    Dipolar Bose and Fermi gases, which are currently being studied extensively experimentally and theoretically, interact through anisotropic, long-range potentials. Here, we replace the long-range potential by a zero-range pseudo-potential that simplifies the theoretical treatment of two dipolar particles in a harmonic trap. Our zero-range pseudo-potential description reproduces the energy spectrum of two dipoles interacting through a shape-dependent potential under external confinement very well, provided that sufficiently many partial waves are included, and readily leads to a classification scheme of the energy spectrum in terms of approximate angular momentum quantum numbers. The results may be directly relevant to the physics of dipolar gases loaded into optical lattices.Comment: 9 pages, 4 figure

    Non-divergent pseudo-potential treatment of spin-polarized fermions under 1D and 3D harmonic confinement

    Full text link
    Atom-atom scattering of bosonic one-dimensional (1D) atoms has been modeled successfully using a zero-range delta-function potential, while that of bosonic 3D atoms has been modeled successfully using Fermi-Huang's regularized s-wave pseudo-potential. Here, we derive the eigenenergies of two spin-polarized 1D fermions under external harmonic confinement interacting through a zero-range potential, which only acts on odd-parity wave functions, analytically. We also present a divergent-free zero-range potential treatment of two spin-polarized 3D fermions under harmonic confinement. Our pseudo-potential treatments are verified through numerical calculations for short-range model potentials.Comment: 9 pages, 4 figures (subm. to PRA on 03/15/2004

    Resonance phenomena in ultracold dipole-dipole scattering

    Full text link
    Elastic scattering resonances occurring in ultracold collisions of either bosonic or fermionic polar molecules are investigated. The Born-Oppenheimer adiabatic representation of the two-bodydynamics provides both a qualitative classification scheme and a quantitative WKB quantization condition that predicts several sequences of resonant states. It is found that the near-threshold energy dependence of ultracold collision cross sections varies significantly with the particle exchange symmetry, with bosonic systems showing much smoother energy variations than their fermionic counterparts. Resonant variations of the angular distributions in ultracold collisions are also described.Comment: 19 pages, 6 figures, revtex4, submitted to J. Phys.
    corecore