29 research outputs found
Recommended from our members
Quantitative comparative analysis of human erythrocyte surface proteins between individuals from two genetically distinct populations
Abstract: Red blood cells (RBCs) play a critical role in oxygen transport, and are the focus of important diseases including malaria and the haemoglobinopathies. Proteins at the RBC surface can determine susceptibility to disease, however previous studies classifying the RBC proteome have not used specific strategies directed at enriching cell surface proteins. Furthermore, there has been no systematic analysis of variation in abundance of RBC surface proteins between genetically disparate human populations. These questions are important to inform not only basic RBC biology but additionally to identify novel candidate receptors for malarial parasites. Here, we use ‘plasma membrane profiling’ and tandem mass tag-based mass spectrometry to enrich and quantify primary RBC cell surface proteins from two sets of nine donors from the UK or Senegal. We define a RBC surface proteome and identify potential Plasmodium receptors based on either diminished protein abundance, or increased variation in RBCs from West African individuals
Recommended from our members
CRISPR/Cas9 knockouts reveal genetic interaction between strain-transcendent erythrocyte determinants of Plasmodium falciparum invasion.
During malaria blood-stage infections, Plasmodium parasites interact with the RBC surface to enable invasion followed by intracellular proliferation. Critical factors involved in invasion have been identified using biochemical and genetic approaches including specific knockdowns of genes of interest from primary CD34+ hematopoietic stem cells (cRBCs). Here we report the development of a robust in vitro culture system to produce RBCs that allow the generation of gene knockouts via CRISPR/Cas9 using the immortal JK-1 erythroleukemia line. JK-1 cells spontaneously differentiate, generating cells at different stages of erythropoiesis, including terminally differentiated nucleated RBCs that we term "jkRBCs." A screen of small-molecule epigenetic regulators identified several bromodomain-specific inhibitors that promote differentiation and enable production of synchronous populations of jkRBCs. Global surface proteomic profiling revealed that jkRBCs express all known Pfalciparum host receptors in a similar fashion to cRBCs and that multiple Pfalciparum strains invade jkRBCs at comparable levels to cRBCs and RBCs. Using CRISPR/Cas9, we deleted two host factors, basigin (BSG) and CD44, for which no natural nulls exist. BSG interacts with the parasite ligand Rh5, a prominent vaccine candidate. A BSG knockout was completely refractory to parasite invasion in a strain-transcendent manner, confirming the essential role for BSG during invasion. CD44 was recently identified in an RNAi screen of blood group genes as a host factor for invasion, and we show that CD44 knockout results in strain-transcendent reduction in invasion. Furthermore, we demonstrate a functional interaction between these two determinants in mediating Pfalciparum erythrocyte invasion
Recommended from our members
Genetic Evidence for Erythrocyte Receptor Glycophorin B Expression Levels Defining a Dominant Plasmodium falciparum Invasion Pathway into Human Erythrocytes.
Plasmodium falciparum, the parasite that causes the deadliest form of malaria, has evolved multiple proteins known as invasion ligands that bind to specific erythrocyte receptors to facilitate invasion of human erythrocytes. The EBA-175/glycophorin A (GPA) and Rh5/basigin ligand-receptor interactions, referred to as invasion pathways, have been the subject of intense study. In this study, we focused on the less-characterized sialic acid-containing receptors glycophorin B (GPB) and glycophorin C (GPC). Through bioinformatic analysis, we identified extensive variation in glycophorin B (GYPB) transcript levels in individuals from Benin, suggesting selection from malaria pressure. To elucidate the importance of the GPB and GPC receptors relative to the well-described EBA-175/GPA invasion pathway, we used an ex vivo erythrocyte culture system to decrease expression of GPA, GPB, or GPC via lentiviral short hairpin RNA transduction of erythroid progenitor cells, with global surface proteomic profiling. We assessed the efficiency of parasite invasion into knockdown cells using a panel of wild-type P. falciparum laboratory strains and invasion ligand knockout lines, as well as P. falciparum Senegalese clinical isolates and a short-term-culture-adapted strain. For this, we optimized an invasion assay suitable for use with small numbers of erythrocytes. We found that all laboratory strains and the majority of field strains tested were dependent on GPB expression level for invasion. The collective data suggest that the GPA and GPB receptors are of greater importance than the GPC receptor, supporting a hierarchy of erythrocyte receptor usage in P. falciparum
Recommended from our members
Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax.
Plasmodium vivax shows a strict host tropism for reticulocytes. We identified transferrin receptor 1 (TfR1) as the receptor for P. vivax reticulocyte-binding protein 2b (PvRBP2b). We determined the structure of the N-terminal domain of PvRBP2b involved in red blood cell binding, elucidating the molecular basis for TfR1 recognition. We validated TfR1 as the biological target of PvRBP2b engagement by means of TfR1 expression knockdown analysis. TfR1 mutant cells deficient in PvRBP2b binding were refractory to invasion of P. vivax but not to invasion of P. falciparum Using Brazilian and Thai clinical isolates, we show that PvRBP2b monoclonal antibodies that inhibit reticulocyte binding also block P. vivax entry into reticulocytes. These data show that TfR1-PvRBP2b invasion pathway is critical for the recognition of reticulocytes during P. vivax invasion
Structural and Functional Studies on the Escherichia coli Inducible Lysine Decarboxylase: Linking the Acid Stress and Stringent Responses
The Escherichia coli acid stress response allows the survival of cells over a wide range of pH challenges: down to pH 2.0 with the extreme acid stress response and down to pH 4.0 – 5.0 with the mild acid stress response. The cell employs a number of different acid stress response systems, including a number of structurally related, pyridoxal-5′-phosphate (PLP)-dependent amino acid decarboxylases, including the glutamic acid, arginine, lysine, and ornithine decarboxylases. The decarboxylases are large multi-domain enzymes that exist as homodimers or higher-order oligomers and have various activity optima at different pH values. By the proton-consuming decarboxylation of a target amino acid, these enzymes provide a response to a wide range of pH challenges. The primary focus of this work is the elucidation of the X-ray crystal structure of the inducible lysine decarboxylase LdcI, a homodecameric enzyme that has distinct 5-fold symmetry. A combination of heavy-atom derivatization, anomalous scattering and molecular replacement techniques were used to determine the X-ray structure and the model was refined to a resolution of 2.0 Å. The structure of LdcI revealed that the protein co-crystallized with the stringent response alarmone ppGpp. The stringent response is activated under nutritional and stress conditions and reorganizes cellular transcription and metabolism from exponential-phase growth into stationary phase growth. The primary target of ppGpp is the RNA polymerase, but other classes of enzymes are known to be affected. ppGpp was found to be a potent inhibitor of LdcI both in vitro and in vivo and this role provides the first evidence of a linkage between the stringent response and acid stress response. Among the decarboxylases related to LdcI (the constitutive lysine, the ornithine and arginine decarboxylases), a number of these enzymes were similarly regulated by ppGpp.Ph
The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition.
International audienceThe stringent response regulator ppGpp has recently been shown by our group to inhibit the Escherichia coli inducible lysine decarboxylase, LdcI. As a follow-up to this observation, we examined the mechanisms that regulate the activities of the other four E. coli enzymes paralogous to LdcI: the constitutive lysine decarboxylase LdcC, the inducible arginine decarboxylase AdiA, the inducible ornithine decarboxylase SpeF, and the constitutive ornithine decarboxylase SpeC. LdcC and SpeC are involved in cellular polyamine biosynthesis, while LdcI, AdiA, and SpeF are involved in the acid stress response. Multiple mechanisms of regulation were found for these enzymes. In addition to LdcI, LdcC and SpeC were found to be inhibited by ppGpp; AdiA activity was found to be regulated by changes in oligomerization, while SpeF and SpeC activities were regulated by GTP. These findings indicate the presence of multiple mechanisms regulating the activity of this important family of decarboxylases. When the enzyme inhibition profiles are analyzed in parallel, a "zone of inhibition" between pH 6 and pH 8 is observed. Hence, the data suggest that E. coli utilizes multiple mechanisms to ensure that these decarboxylases remain inactive around neutral pH possibly to reduce the consumption of amino acids at this pH
Crystallization and preliminary X-ray analysis of the inducible lysine decarboxylase from Escherichia coli
The structure of the decameric inducible lysine decarboxylase from E. coli was determined by SIRAS using a hexatantalum dodecabromide (Ta6Br12
2+) derivative. Model building and refinement are under way
Recommended from our members
Quantitative comparative analysis of human erythrocyte surface proteins between individuals from two genetically distinct populations
Abstract: Red blood cells (RBCs) play a critical role in oxygen transport, and are the focus of important diseases including malaria and the haemoglobinopathies. Proteins at the RBC surface can determine susceptibility to disease, however previous studies classifying the RBC proteome have not used specific strategies directed at enriching cell surface proteins. Furthermore, there has been no systematic analysis of variation in abundance of RBC surface proteins between genetically disparate human populations. These questions are important to inform not only basic RBC biology but additionally to identify novel candidate receptors for malarial parasites. Here, we use ‘plasma membrane profiling’ and tandem mass tag-based mass spectrometry to enrich and quantify primary RBC cell surface proteins from two sets of nine donors from the UK or Senegal. We define a RBC surface proteome and identify potential Plasmodium receptors based on either diminished protein abundance, or increased variation in RBCs from West African individuals