8 research outputs found

    TET2 Function in Hematopoietic Malignancies, Immune Regulation, and DNA Repair

    Get PDF
    Over the last decade, investigation of Ten-Eleven Translocation 2 (TET2) gene function and TET2 mutation have become of increasing interest in the field of hematology. This heightened interest was sparked by the seminal discoveries that (1) TET2 mutation is associated with development of hematological malignancies and that (2) the TET family of proteins is critical in promoting DNA demethylation and immune homeostasis. Since then, additional studies have begun to unravel the question “Does TET2 have additional biological functions in the regulation of hematopoiesis?” Here, we present a mini-review focused on the current understanding of TET2 in hematopoiesis, hematological malignancies, and immune regulation. Importantly, we highlight the critical function that TET2 facilitates in maintaining the stability of the genome. Based on our review of the literature, we provide a new hypothesis that loss of TET2 may lead to dysregulation of the DNA repair response, augment genome instability, and subsequently sensitize myeloid leukemia cells to PARP inhibitor treatment

    Increased Expression of System x_c^- in Glioblastoma Confers an Altered Metabolic State and Temozolomide Resistance

    Get PDF
    Glioblastoma multiforme is the most aggressive malignant primary brain tumor in adults. Several studies have shown that glioma cells upregulate the expression of xCT (SLC7A11), the catalytic subunit of system x_c^-, a transporter involved in cysteine import, that modulates glutathione production and glioma growth. However, the role of system x_c^- in regulating the sensitivity of glioma cells to chemotherapy is currently debated. Inhibiting system x_c^- with sulfasalazine decreased glioma growth and survival via redox modulation, and use of the chemotherapeutic agent temozolomide together with sulfasalazine had a synergistic effect on cell killing. To better understand the functional consequences of system x_c^- in glioma, stable SLC7A11-knockdown and -overexpressing U251 glioma cells were generated. Modulation of SLC7A11 did not alter cellar proliferation but overexpression did increase anchorage-independent cell growth. Knockdown of SLC7A11 increased basal reactive oxygen species (ROS) and decreased glutathione generation resulting in increased cell death under oxidative and genotoxic stress. Overexpression of SLC7A11 resulted in increased resistance to oxidative stress and decreased chemosensitivity to temozolomide. In addition, SLC7A11 overexpression was associated with altered cellular metabolism including increased mitochondrial biogenesis, oxidative phosphorylation, and ATP generation. These results suggest that expression of SLC7A11 in the context of glioma contributes to tumorigenesis, tumor progression, and resistance to standard chemotherapy

    Clinical characteristics in immune thrombocytopenia patients after COVID-19 vaccination

    No full text
    It is well documented that COVID-19 vaccines greatly reduce the severity and complications of SARS-CoV-2 infection. However, it has been reported that COVID-19 related vaccines may induce or exacerbate autoimmune hematological disorders, for example, a decrease in platelet numbers characteristic of immune thrombocytopenia (ITP). To investigate this, we retrospectively reported, for the first time, the clinical characteristics of 42 ITP patients after COVID-19 vaccination in southwest China. Of the 42 patients, 28 patients were historically diagnosed ITP, and their platelet counts (PC) decrease mainly occurred after the first-dose vaccinations. The average PC after vaccination was 39.5 × 109/L and recovered to an average of 80.6 × 109/L after treatment. Efficacy of treatment was 90%, and only 10% maintained low PC at the third month of treatment. More interestingly, of the 42 patients, 14 were newly diagnosed ITP following vaccination. Of these 14 patients, 6 patients (43%) were found PC deterioration after the first vaccine dose, and 7 patients (50%) after the second dose. Fortunately, the peripheral PC of all 14 patients recovered significantly after treatment, and the average PC was 139.4 × 109/L, including 8 CRs (complete response) and 6 PRs (partial response). Notably, 9 of the 14 cases were found to have abnormal immune indices when thrombocytopenia diagnosed. No severe organ hemorrhage was found in either subgroup. These results are reassuring the vaccine safety for ITP patients, in that the risks of aggravating thrombocytopenia by COVID-19 vaccination do exist, but it was transient and can be effectively controlled through intensive clinical monitoring and management
    corecore