3 research outputs found

    Association of Smoking with Metabolic Volatile Organic Compounds in Exhaled Breath

    No full text
    Lung cancer (LC) screening will be more efficient if it is applied to a well-defined high-risk population. Characteristics including metabolic byproducts may be taken into account to access LC risk more precisely. Breath examination provides a non-invasive method to monitor metabolic byproducts. However, the association between volatile organic compounds (VOCs) in exhaled breath and LC risk or LC risk factors is not studied. Exhaled breath samples from 122 healthy persons, who were given routine annual exam from December 2015 to December 2016, were analyzed using thermal desorption coupled with gas chromatography mass spectrometry (TD-GC-MS). Smoking characteristics, air quality, and other risk factors for lung cancer were collected. Univariate and multivariate analyses were used to evaluate the relationship between VOCs and LC risk factors. 7, 7, 11, and 27 VOCs were correlated with smoking status, smoking intensity, years of smoking, and depth of inhalation, respectively. Exhaled VOCs are related to smoking and might have a potential to evaluate LC risk more precisely. Both an assessment of temporal stability and testing in a prospective study are needed to establish the performance of VOCs such as 2,5-dimethylfuranm and 4-methyloctane as lung cancer risk biomarkers

    Smartphone-Based Platforms for Clinical Detections in Lung-Cancer-Related Exhaled Breath Biomarkers: A Review

    No full text
    Lung cancer has been studied for decades because of its high morbidity and high mortality. Traditional methods involving bronchoscopy and needle biopsy are invasive and expensive, which makes patients suffer more risks and costs. Various noninvasive lung cancer markers, such as medical imaging indices, volatile organic compounds (VOCs), and exhaled breath condensates (EBCs), have been discovered for application in screening, diagnosis, and prognosis. However, the detection of markers still relies on bulky and professional instruments, which are limited to training personnel or laboratories. This seriously hinders population screening for early diagnosis of lung cancer. Advanced smartphones integrated with powerful applications can provide easy operation and real-time monitoring for healthcare, which demonstrates tremendous application scenarios in the biomedical analysis region from medical institutions or laboratories to personalized medicine. In this review, we propose an overview of lung-cancer-related noninvasive markers from exhaled breath, focusing on the novel development of smartphone-based platforms for the detection of these biomarkers. Lastly, we discuss the current limitations and potential solutions
    corecore