33 research outputs found

    Characterizing Gene Expressions Based on Their Temporal Observations

    Get PDF
    Temporal gene expression data are of particular interest to researchers as they contain rich information in characterization of gene function and have been widely used in biomedical studies. However, extracting information and identifying efficient treatment effects without loss of temporal information are still in problem. In this paper, we propose a method of classifying temporal gene expression curves in which individual expression trajectory is modeled as longitudinal data with changeable variance and covariance structure. The method, mainly based on generalized mixed model, is illustrated by a dense temporal gene expression data in bacteria. We aimed at evaluating gene effects and treatments. The power and time points of measurements are also characterized via the longitudinal mixed model. The results indicated that the proposed methodology is promising for the analysis of temporal gene expression data, and that it could be generally applicable to other high-throughput temporal gene expression analyses

    Comprehensive Analysis of Gene-Environmental Interactions with Temporal Gene Expression Profiles in Pseudomonas aeruginosa

    Get PDF
    To explore gene-environment interactions, based on temporal gene expression information, we analyzed gene and treatment information intensively and inferred interaction networks accordingly. The main idea is that gene expression reflects the response of genes to environmental factors, assuming that variations of gene expression occur under different conditions. Then we classified experimental conditions into several subgroups based on the similarity of temporal gene expression profiles. This procedure is useful because it allows us to combine diverse gene expression data as they become available, and, especially, allowing us to lay the regulatory relationships on a concrete biological basis. By estimating the activation points, we can visualize the gene behavior, and obtain a consensus gene activation order, and hence describe conditional regulatory relationships. The estimation of activation points and building of synthetic genetic networks may result in important new insights in the ongoing endeavor to understand the complex network of gene regulation

    A Unique ATPase, ArtR (PA4595), Represses the Type III Secretion System in Pseudomonas aeruginosa

    Get PDF
    Pseudomonas aeruginosa is an important human pathogen which uses the type III secretion system (T3SS) as a primary virulence factor to establish infections in humans. The results presented in this report revealed that the ATP-binding protein PA4595 (named ArtR, a Regulator that is an ATP-activated Repressor of T3SS) represses T3SS expression in P. aeruginosa. The expression of T3SS genes, including exoS, exoY, exoT, exsCEBA, and exsD-pscB-L, increased significantly when artR was knockout. The effect of ArtR on ExsA is at the transcriptional level, not at the translational level. The regulatory role and cytoplasm localization of ArtR suggest it belongs to the REG sub-family of ATP-binding cassette (ABC) family. Purified GST-tagged ArtR showed ATPase activity in vitro. The conserved aspartate residues in the dual Walker B motifs prove to be essential for the regulatory function of ArtR. The regulation of T3SS by ArtR is unique, which does not involve the known GacS/A-RsmY/Z-RsmA-ExsA pathway or Vfr. This is the first REG subfamily of ATP-binding cassette that is reported to regulate T3SS genes in bacteria. The results specify a novel player in the regulatory networks of T3SS in P. aeruginosa

    Probiotics and Alcoholic Liver Disease: Treatment and Potential Mechanisms

    Get PDF
    Despite extensive research, alcohol remains one of the most common causes of liver disease in the United States. Alcoholic liver disease (ALD) encompasses a broad spectrum of disorders, including steatosis, steatohepatitis, and cirrhosis. Although many agents and approaches have been tested in patients with ALD and in animals with experimental ALD in the past, there is still no FDA (Food and Drug Administration) approved therapy for any stage of ALD. With the increasing recognition of the importance of gut microbiota in the onset and development of a variety of diseases, the potential use of probiotics in ALD is receiving increasing investigative and clinical attention. In this review, we summarize recent studies on probiotic intervention in the prevention and treatment of ALD in experimental animal models and patients. Potential mechanisms underlying the probiotic function are also discussed

    Environmental Regulation of Pseudomonas aeruginosa PAO1 Las and Rhl Quorum-Sensing Systems▿

    No full text
    The lasI-lasR and the rhlI-rhlR quorum-sensing systems in Pseudomonas aeruginosa regulate the expression of numerous cellular and secreted virulence factor genes and play important roles in the development of biofilms. The las and rhl systems themselves are known to be directly or indirectly regulated by a number of transcriptional regulators, and consequently, their expression is sensitive to environmental conditions. In this report, the activities of these two quorum-sensing systems have been examined systematically under 46 growth conditions, and the regulation by environmental conditions has been investigated. The relative timing and strength of expression of these two systems varied significantly under different conditions, which contrasts with the notion of a preset hierarchy with these two systems in P. aeruginosa. Depending on the growth conditions, the correlation between each synthase and its cognate transcriptional regulator also varied, suggesting that the transcription of these genes independently allows for further fine tuning of each system. Finally, we observe that the activities of both the lasI-lasR and the rhlI-rhlR quorum-sensing systems were dramatically enhanced in the presence of extracts of sputum samples from cystic fibrosis patients

    Characterizing Gene Expressions Based on Their Temporal Observations

    No full text
    Temporal gene expression data are of particular interest to researchers as they contain rich information in characterization of gene function and have been widely used in biomedical studies. However, extracting information and identifying efficient treatment effects without loss of temporal information are still in problem. In this paper, we propose a method of classifying temporal gene expression curves in which individual expression trajectory is modeled as longitudinal data with changeable variance and covariance structure. The method, mainly based on generalized mixed model, is illustrated by a dense temporal gene expression data in bacteria. We aimed at evaluating gene effects and treatments. The power and time points of measurements are also characterized via the longitudinal mixed model. The results indicated that the proposed methodology is promising for the analysis of temporal gene expression data, and that it could be generally applicable to other high-throughput temporal gene expression analyses.Peer Reviewe

    Putative RNA Ligase RtcB Affects the Switch between T6SS and T3SS in Pseudomonas aeruginosa

    No full text
    The opportunistic pathogen Pseudomonas aeruginosa is a significant cause of infection in immunocompromised individuals, cystic fibrosis patients, and burn victims. To benefit its survival, the bacterium adapt to either a motile or sessile lifestyle when infecting the host. The motile bacterium has an often activated type III secretion system (T3SS), which is virulent to the host, whereas the sessile bacterium harbors an active T6SS and lives in biofilms. Regulatory pathways involving Gac-Rsm or secondary messengers such as c-di-GMP determine which lifestyle is favorable for P. aeruginosa. Here, we introduce the RNA binding protein RtcB as a modulator of the switch between motile and sessile bacterial lifestyles. Using the wild-type P. aeruginosa PAO1, and a retS mutant PAO1(∆retS) in which T3SS is repressed and T6SS active, we show that deleting rtcB led to simultaneous expression of T3SS and T6SS in both PAO1(∆rtcB) and PAO1(∆rtcB∆retS). The deletion of rtcB also increased biofilm formation in PAO1(∆rtcB) and restored the motility of PAO1(∆rtcB∆retS). RNA-sequencing data suggested RtcB as a global modulator affecting multiple virulence factors, including bacterial secretion systems. Competitive killing and infection assays showed that the three T6SS systems (H1, H2, and H3) in PAO1(∆rtcB) were activated into a functional syringe, and could compete with Escherichia coli and effectively infect lettuce. Western blotting and RT-PCR results showed that RtcB probably exerted its function through RsmA in PAO1(∆rtcB∆retS). Quantification of c-di-GMP showed an elevated intracellular levels in PAO1(∆rtcB), which likely drove the switch between T6SS and T3SS, and contributed to the altered phenotypes and characteristics observed. Our data demonstrate a pivotal role of RtcB in the virulence of P. aeruginosa by controlling multiple virulence determinants, such as biofilm formation, motility, pyocyanin production, T3SS, and T6SS secretion systems towards eukaryotic and prokaryotic cells. These findings suggest RtcB as a potential target for controlling P. aeruginosa colonization, establishment, and pathogenicity

    The YebC Family Protein PA0964 Negatively Regulates the Pseudomonas aeruginosa Quinolone Signal System and Pyocyanin Production ▿

    No full text
    Bacterial pathogenicity is often manifested by the expression of various cell-associated and secreted virulence factors, such as exoenzymes, protease, and toxins. In Pseudomonas aeruginosa, the expression of virulence genes is coordinately controlled by the global regulatory quorum-sensing systems, which includes the las and rhl systems as well as the Pseudomonas quinolone signal (PQS) system. Phenazine compounds are among the virulence factors under the control of both the rhl and PQS systems. In this study, regulation of the phzA1B1C1D1E1 (phzA1) operon, which is involved in phenazine synthesis, was investigated. In an initial study of inducing conditions, we observed that phzA1 was induced by subinhibitory concentrations of tetracycline. Screening of 13,000 mutants revealed 32 genes that altered phzA1 expression in the presence of subinhibitory tetracycline concentrations. Among them, the gene PA0964, designated pmpR (pqsR-mediated PQS regulator), has been identified as a novel regulator of the PQS system. It belongs to a large group of widespread conserved hypothetical proteins with unknown function, the YebC protein family (Pfam family DUF28). It negatively regulates the quorum-sensing response regulator pqsR of the PQS system by binding at its promoter region. Alongside phzA1 expression and phenazine and pyocyanin production, a set of virulence factors genes controlled by both rhl and the PQS were shown to be modulated by PmpR. Swarming motility and biofilm formation were also significantly affected. The results added another layer of regulation in the rather complex quorum-sensing systems in P. aeruginosa and demonstrated a clear functional clue for the YebC family proteins
    corecore