29 research outputs found

    Is \u3cem\u3eHelicobacter pylori\u3c/em\u3e a true microaerophile?

    No full text
    Background: There is no general consensus about the specific oxygen and carbon dioxide requirements of the human pathogen Helicobacter pylori. This bacterium is considered a microaerophile and consequently, it is grown under atmospheres at oxygen tensions 5–19% and carbon dioxide tensions 5–10%, both for clinical and basic and applied research purposes. The current study compared the growth of H. pylori in vitro, under various gas atmospheres, and determined some specific changes in the physiology of bacteria grown under different oxygen partial pressures. Methods: Measurements of bacterial growth under various conditions were carried out employing classical solid and liquid culture techniques. Enzymatic activities were measured using spectrophotometric assays. Results: H. pylori and all the other Helicobacter spp. tested had an absolute requirement for elevated carbon dioxide concentrations in the growth atmosphere. In contrast with other Helicobacter spp., H. pylori can tolerate elevated oxygen tensions when grown at high bacterial concentrations. Under 5% CO2, the bacterium showed similar growth in liquid cultures under oxygen tensions from microaerobic (\u3c 5%) to fully aerobic (21%) at cell densities higher than 5 × 105 cfu/ml for media supplemented with horse serum and 5 × 107 cfu/ml for media supplemented with β-cyclodextrin. Evidence that changes occurred in the physiology of H. pylori was obtained by comparing the activities of ferredoxin: NADH (nicotinamide adenine dinucleotide) oxidoreductases of bacteria grown under microaerobic and aerobic atmospheres. Conclusions: H. pylori is a capnophile able to grow equally well in vitro under microaerobic or aerobic conditions at high bacterial concentrations, and behaved like oxygen-sensitive microaerophiles at low cell densities. Some characteristics of H. pylori cells grown in vitro under microaerobic conditions appeared to mimic better the physiology of organisms grown in their natural niche in the human stomach

    The bZIP transcription factor MeaB mediates nitrogen metabolite repression at specific loci

    No full text
    In Fusarium fujikuroi, bikaverin (BIK) biosynthesis is subject to repression by nitrogen. Unlike most genes subject to nitrogen metabolite repression, it has been shown that transcription of bik biosynthetic genes is not AreA dependent. Searching for additional transcription factors that may be involved in nitrogen regulation, we cloned and characterized the orthologue of Aspergillus nidulans meaB, which encodes a bZIP transcription factor. Two transcripts are derived from F. fujikuroi meaB: the large transcript (meaBL) predominates under nitrogen-sufficient conditions and the smaller transcript (meaBS) under nitrogen limitation, in an AreA-dependent manner. MeaB is specifically translocated to the nucleus under nitrogen-sufficient conditions in both F. fujikuroi and A. nidulans. Deletion of meaB resulted in partial upregulation of several nitrogen-regulated genes, but only in the ΔmeaB ΔareA double mutant were the bikaverin genes significantly upregulated in the presence of glutamine. These data demonstrate that MeaB and AreA coordinately mediate nitrogen metabolite repression and, importantly, that independently of AreA, MeaB can mediate nitrogen metabolite repression at specific loci in F. fujikuroi
    corecore