38,509 research outputs found

    Multipole Gravitational Lensing and High-order Perturbations on the Quadrupole Lens

    Full text link
    An arbitrary surface mass density of gravitational lens can be decomposed into multipole components. We simulate the ray-tracing for the multipolar mass distribution of generalized SIS (Singular Isothermal Sphere) model, based on the deflection angles which are analytically calculated. The magnification patterns in the source plane are then derived from inverse shooting technique. As have been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses such kind of overlapping caustics, the image numbers change by \pm 4, rather than \pm 2. There are two kinds of images for the caustics. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4 and 5 mode components, and found that one, two, and three butterfly or swallowtail singularities can be produced respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails contact, eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.Comment: 24 pages, 6 figure

    Galaxy alignment on large and small scales

    Full text link
    Galaxies are not randomly distributed across the universe but showing different kinds of alignment on different scales. On small scales satellite galaxies have a tendency to distribute along the major axis of the central galaxy, with dependence on galaxy properties that both red satellites and centrals have stronger alignment than their blue counterparts. On large scales, it is found that the major axes of Luminous Red Galaxies (LRGs) have correlation up to 30Mpc/h. Using hydro-dynamical simulation with star formation, we investigate the origin of galaxy alignment on different scales. It is found that most red satellite galaxies stay in the inner region of dark matter halo inside which the shape of central galaxy is well aligned with the dark matter distribution. Red centrals have stronger alignment than blue ones as they live in massive haloes and the central galaxy-halo alignment increases with halo mass. On large scales, the alignment of LRGs is also from the galaxy-halo shape correlation, but with some extent of mis-alignment. The massive haloes have stronger alignment than haloes in filament which connect massive haloes. This is contrary to the naive expectation that cosmic filament is the cause of halo alignment.Comment: 4 pages, 3 figures, To appear in the proceedings of the IAU Symposium 308 "The Zeldovich Universe: Genesis and Growth of the Cosmic Web

    State space collapse and diffusion approximation for a network operating under a fair bandwidth sharing policy

    Full text link
    We consider a connection-level model of Internet congestion control, introduced by Massouli\'{e} and Roberts [Telecommunication Systems 15 (2000) 185--201], that represents the randomly varying number of flows present in a network. Here, bandwidth is shared fairly among elastic document transfers according to a weighted α\alpha-fair bandwidth sharing policy introduced by Mo and Walrand [IEEE/ACM Transactions on Networking 8 (2000) 556--567] [α∈(0,∞)\alpha\in (0,\infty)]. Assuming Poisson arrivals and exponentially distributed document sizes, we focus on the heavy traffic regime in which the average load placed on each resource is approximately equal to its capacity. A fluid model (or functional law of large numbers approximation) for this stochastic model was derived and analyzed in a prior work [Ann. Appl. Probab. 14 (2004) 1055--1083] by two of the authors. Here, we use the long-time behavior of the solutions of the fluid model established in that paper to derive a property called multiplicative state space collapse, which, loosely speaking, shows that in diffusion scale, the flow count process for the stochastic model can be approximately recovered as a continuous lifting of the workload process.Comment: Published in at http://dx.doi.org/10.1214/08-AAP591 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Spin Fluctuation Induced Dephasing in a Mesoscopic Ring

    Get PDF
    We investigate the persistent current in a hybrid Aharonov-Bohm ring - quantum dot system coupled to a reservoir which provides spin fluctuations. It is shown that the spin exchange interaction between the quantum dot and the reservoir induces dephasing in the absence of direct charge transfer. We demonstrate an anomalous nature of this spin-fluctuation induced dephasing which tends to enhance the persistent current. We explain our result in terms of the separation of the spin from the charge degree of freedom. The nature of the spin fluctuation induced dephasing is analyzed in detail.Comment: 4 pages, 4 figure

    Zero-Bias Anomalies in Narrow Tunnel Junctions in the Quantum Hall Regime

    Full text link
    We report on the study of cleaved-edge-overgrown line junctions with a serendipitously created narrow opening in an otherwise thin, precise line barrier. Two sets of zero-bias anomalies are observed with an enhanced conductance for filling factors ν>1\nu > 1 and a strongly suppressed conductance for ν<1\nu < 1. A transition between the two behaviors is found near ν≈1\nu \approx 1. The zero-bias anomaly (ZBA) line shapes find explanation in Luttinger liquid models of tunneling between quantum Hall edge states. The ZBA for ν<1\nu < 1 occurs from strong backscattering induced by suppression of quasiparticle tunneling between the edge channels for the n=0n = 0 Landau levels. The ZBA for ν>1\nu > 1 arises from weak tunneling of quasiparticles between the n=1n = 1 edge channels.Comment: version with edits for clarit

    Self-organization of charge under pressure in the organic conductor (TMTSF)2ReO4

    Full text link
    (TMTSF)2ReO4 presents a phase coexistence between two anion orderings defined by their wave vectors q_2=(1/2,1/2,1/2) and q_3=(0,1/2,1/2) in a wide range of pressure (8-11kbar) and temperature. From the determination of the anisotropy of the conductivity and the superconducting transitions in this regime we were able to extract the texture which results from a self-organization of the orientations of the ReO4 anions in the sample. At the lowest pressures, the metallic parts, related to the q_3 order, form droplets elongated along the a-axis embedded in the semiconducting matrix associated with the q_2 order. Above 10kbar, filaments along the a-axis extend from one end of the sample to the other nearly up to the end of the coexistence regime. A mapping of the system into an anisotropic Ising lattice is satisfactory to analyze the data. satisfactory to analyze the data.Comment: 7 pages, 3 figures, EPL forma
    • …
    corecore