1,734 research outputs found
Hund's Rule for Composite Fermions
We consider the ``fractional quantum Hall atom" in the vanishing Zeeman
energy limit, and investigate the validity of Hund's maximum-spin rule for
interacting electrons in various Landau levels. While it is not valid for {\em
electrons} in the lowest Landau level, there are regions of filling factors
where it predicts the ground state spin correctly {\em provided it is applied
to composite fermions}. The composite fermion theory also reveals a
``self-similar" structure in the filling factor range .Comment: 10 pages, revte
Scale Dependence of Twist-3 Quark-Gluon Operators for Single Spin Asymmetries
We derive the scale dependence of twist-3 quark-gluon operators, or ETQS
matrix elements, at one-loop. These operators are used to factorize transverse
single spin asymmetries, which are studied intensively both in experiment and
theory. The scale dependence of two special cases are particularly interesting.
One is of soft-gluon-pole matrix elements, another is of soft-quark-pole matrix
elements. From our results the evolutions in the two cases can be obtained. A
comparison with existing results of soft-gluon-pole matrix elements is made.Comment: typo in Eq.(10) corrected, references adde
Tibetan sheep are better able to cope with low energy intake than Small-tailed Han sheep due to lower maintenance energy requirements and higher nutrient digestibilities
Tibetan sheep are indigenous to the Qinghai-Tibetan Plateau (QTP) and are well-adapted to and even thrive under the harsh alpine conditions. Small-tailed Han sheep were introduced to the plateau because of their high prolificacy and are maintained mainly in feedlots. Because of their different backgrounds, we hypothesised that Tibetan and Small-tailed Han sheep would differ in their utilization of energy intake and predicted that Tibetan sheep would cope better with low energy intake than Small-tailed Han sheep. To test this prediction, we determined nutrient digestibilities, energy requirements for maintenance and blood metabolite and hormone concentrations involved in energy metabolism in these breeds. Sheep of each breed (n = 24 of each, all wethers and 1.5 years of age) were distributed randomly into one of four groups and offered ad libitum diets of different digestible energy (DE) densities: 8.21, 9.33, 10.45 and 11.57 MJ DE/kg Dry matter (DM). Following 42 d of measuring feed intake, a 1-week digestion and metabolism experiment was done. DM intakes did not differ between breeds nor among treatments but, by design, DE intake increased linearly in both breeds as dietary energy level increased (P < 0.001). The average daily gain (ADG) was significantly greater in the Tibetan than Small-tailed Han sheep (P = 0.003) and increased linearly in both breeds (P < 0.001). In addition, from the regression analysis of ADG on DE intake, daily DE maintenance requirements were lower for Tibetan than for Small-tailed Han sheep (0.41 vs 0.50 MJ/BW0.75, P < 0.05). The DE and metabolizable energy (ME) digestibilities were higher in the Tibetan than Small-tailed Han sheep (P < 0.001) and increased linearly as the energy level increased in the diet (P < 0.001). At the lowest energy treatment, Tibetan sheep when compared with Small-tailed Han sheep, had: 1) higher serum glucose and glucagon, but lower insulin concentrations (P < 0.05), which indicated a higher capacity for gluconeogenesis and ability to regulate glucose metabolism; and 2) higher non-esterified fatty acids (NEFA) and lower very low density lipoprotein (VLDL) and triglyceride (TG) concentrations (P < 0.05), which indicated a higher capacity for NEFA oxidation but lower ability for triglyceride (TG) synthesis. We concluded that our prediction was supported as these differences between breeds conferred an advantage for Tibetan over Small-tailed Han sheep to cope better with low energy diets
Measurements of the Composite Fermion masses from the spin polarization of 2-D electrons in the region
Measurements of the reflectivity of a 2-D electron gas are used to deduce the
polarization of the Composite Fermion hole system formed for Landau level
occupancies in the regime 1<\nu<2. The measurements are consistent with the
formation of a mixed spin CF system and allow the density of states or
`polarization' effective mass of the CF holes to be determined. The mass values
at \nu=3/2 are found to be ~1.9m_{e} for electron densities of 4.4 x 10^{11}
cm^{-2}, which is significantly larger than those found from measurements of
the energy gaps at finite values of effective magnetic field.Comment: 4 pages, 3 fig
String compactification, QCD axion and axion-photon-photon coupling
It is pointed out that there exist a few problems to be overcome toward an
observable sub-eV QCD axion in superstring compactification. We give a general
expression for the axion decay constant. For a large domain wall number
, the axion decay constant can be substantially lowered from a generic
value of a scalar singlet VEV. The Yukawa coupling structure in the recent
model is studied completely, including the needed nonrenormalizable
terms toward realistic quark and lepton masses. In this model we find an
approximate global symmetry and vacuum so that a QCD axion results but its
decay constant is at the GUT scale. The axion-photon-photon coupling is
calculated for a realistic vacuum satisfying the quark and lepton mass matrix
conditions. It is the first time calculation of in
realistic string compactifications: .Comment: 33 pages, 2 figures, JHEP format, some errors in the superpotential
couplings are corrected and the following discussions are changed
correspondingl
Fractional Quantum Hall States in Low-Zeeman-Energy Limit
We investigate the spectrum of interacting electrons at arbitrary filling
factors in the limit of vanishing Zeeman splitting. The composite fermion
theory successfully explains the low-energy spectrum {\em provided the
composite fermions are treated as hard-core}.Comment: 12 pages, revte
Charge Density Wave-Assisted Tunneling Between Hall Edge States
We study the intra-planar tunneling between quantum Hall samples separated by
a quasi one-dimensional barrier, induced through the interaction of edge
degrees of freedom with the charge density waves of a Hall crystal defined in a
parallel layer. A field theory formulation is set up in terms of bosonic
(2+1)-dimensional excitations coupled to (1+1)-dimensional fermions. Parity
symmetry is broken at the quantum level by the confinement of
soliton-antisoliton pairs near the tunneling region. The usual Peierls argument
allows to estimate the critical temperature , so that for mass
corrections due to longitudinal density fluctuations disappear from the edge
spectrum. We compute the gap dependence upon the random global phase of the
pinned charge density wave, as well as the effects of a voltage bias applied
across the tunneling junction.Comment: Additional references + 1 figure + more detailed discussions. To be
published in Phys. Rev.
Reaction Diffusion Models in One Dimension with Disorder
We study a large class of 1D reaction diffusion models with quenched disorder
using a real space renormalization group method (RSRG) which yields exact
results at large time. Particles (e.g. of several species) undergo diffusion
with random local bias (Sinai model) and react upon meeting. We obtain the
large time decay of the density of each specie, their associated universal
amplitudes, and the spatial distribution of particles. We also derive the
spectrum of exponents which characterize the convergence towards the asymptotic
states. For reactions with several asymptotic states, we analyze the dynamical
phase diagram and obtain the critical exponents at the transitions. We also
study persistence properties for single particles and for patterns. We compute
the decay exponents for the probability of no crossing of a given point by,
respectively, the single particle trajectories () or the thermally
averaged packets (). The generalized persistence exponents
associated to n crossings are also obtained. Specifying to the process or A with probabilities , we compute exactly the exponents
and characterizing the survival up to time t of a domain
without any merging or with mergings respectively, and and
characterizing the survival up to time t of a particle A without
any coalescence or with coalescences respectively.
obey hypergeometric equations and are numerically surprisingly close to pure
system exponents (though associated to a completely different diffusion
length). Additional disorder in the reaction rates, as well as some open
questions, are also discussed.Comment: 54 pages, Late
A first-principles study of MgB2 (0001) surfaces
We report self-consistent {\it ab initio} calculations of structural and
electronic properties for the B- and Mg-terminated MgB (0001) surfaces.
We employ ultra-soft pseudopotentials and plane wave basis sets within the
generalized gradient approximation. The surface relaxations are found to be
small for both B- and Mg-terminated surfaces. For the B-terminated surface,
both B and surface bands appear, while only one B
surface band exists near the Fermi level for the Mg-terminated surface. The
superconductivity of the MgB surfaces is discussed. The work function is
predicted to be 5.95 and 4.25 eV for the B- and Mg-terminated surfaces
respectively. The simulated scanning tunneling microscopy images of the
surfaces are not sensitive to the sign and value of the bias voltages, but
depend strongly on the tip-sample distance. An image reversal is predicted for
the Mg-terminated surface.Comment: 3 pages, 4 figures, Revte
Bulk-sensitive photoemission spectroscopy of A_2FeMoO_6 double perovskites (A=Sr, Ba)
Electronic structures of Sr_2FeMoO_6 (SFMO) and Ba_2FeMoO_6 (BFMO) double
perovskites have been investigated using the Fe 2p->3d resonant photoemission
spectroscopy (PES) and the Cooper minimum in the Mo 4d photoionization cross
section. The states close to the Fermi level are found to have strongly mixed
Mo-Fe t_{2g} character, suggesting that the Fe valence is far from pure 3+. The
Fe 2p_{3/2} XAS spectra indicate the mixed-valent Fe^{3+}-Fe^{2+}
configurations, and the larger Fe^{2+} component for BFMO than for SFMO,
suggesting a kind of double exchange interaction. The valence-band PES spectra
reveal good agreement with the LSDA+U calculation.Comment: 4 pages, 3 figure
- …