1,734 research outputs found

    Hund's Rule for Composite Fermions

    Full text link
    We consider the ``fractional quantum Hall atom" in the vanishing Zeeman energy limit, and investigate the validity of Hund's maximum-spin rule for interacting electrons in various Landau levels. While it is not valid for {\em electrons} in the lowest Landau level, there are regions of filling factors where it predicts the ground state spin correctly {\em provided it is applied to composite fermions}. The composite fermion theory also reveals a ``self-similar" structure in the filling factor range 4/3>ν>2/34/3>\nu>2/3.Comment: 10 pages, revte

    Scale Dependence of Twist-3 Quark-Gluon Operators for Single Spin Asymmetries

    Full text link
    We derive the scale dependence of twist-3 quark-gluon operators, or ETQS matrix elements, at one-loop. These operators are used to factorize transverse single spin asymmetries, which are studied intensively both in experiment and theory. The scale dependence of two special cases are particularly interesting. One is of soft-gluon-pole matrix elements, another is of soft-quark-pole matrix elements. From our results the evolutions in the two cases can be obtained. A comparison with existing results of soft-gluon-pole matrix elements is made.Comment: typo in Eq.(10) corrected, references adde

    Tibetan sheep are better able to cope with low energy intake than Small-tailed Han sheep due to lower maintenance energy requirements and higher nutrient digestibilities

    Full text link
    Tibetan sheep are indigenous to the Qinghai-Tibetan Plateau (QTP) and are well-adapted to and even thrive under the harsh alpine conditions. Small-tailed Han sheep were introduced to the plateau because of their high prolificacy and are maintained mainly in feedlots. Because of their different backgrounds, we hypothesised that Tibetan and Small-tailed Han sheep would differ in their utilization of energy intake and predicted that Tibetan sheep would cope better with low energy intake than Small-tailed Han sheep. To test this prediction, we determined nutrient digestibilities, energy requirements for maintenance and blood metabolite and hormone concentrations involved in energy metabolism in these breeds. Sheep of each breed (n = 24 of each, all wethers and 1.5 years of age) were distributed randomly into one of four groups and offered ad libitum diets of different digestible energy (DE) densities: 8.21, 9.33, 10.45 and 11.57 MJ DE/kg Dry matter (DM). Following 42 d of measuring feed intake, a 1-week digestion and metabolism experiment was done. DM intakes did not differ between breeds nor among treatments but, by design, DE intake increased linearly in both breeds as dietary energy level increased (P < 0.001). The average daily gain (ADG) was significantly greater in the Tibetan than Small-tailed Han sheep (P = 0.003) and increased linearly in both breeds (P < 0.001). In addition, from the regression analysis of ADG on DE intake, daily DE maintenance requirements were lower for Tibetan than for Small-tailed Han sheep (0.41 vs 0.50 MJ/BW0.75, P < 0.05). The DE and metabolizable energy (ME) digestibilities were higher in the Tibetan than Small-tailed Han sheep (P < 0.001) and increased linearly as the energy level increased in the diet (P < 0.001). At the lowest energy treatment, Tibetan sheep when compared with Small-tailed Han sheep, had: 1) higher serum glucose and glucagon, but lower insulin concentrations (P < 0.05), which indicated a higher capacity for gluconeogenesis and ability to regulate glucose metabolism; and 2) higher non-esterified fatty acids (NEFA) and lower very low density lipoprotein (VLDL) and triglyceride (TG) concentrations (P < 0.05), which indicated a higher capacity for NEFA oxidation but lower ability for triglyceride (TG) synthesis. We concluded that our prediction was supported as these differences between breeds conferred an advantage for Tibetan over Small-tailed Han sheep to cope better with low energy diets

    Measurements of the Composite Fermion masses from the spin polarization of 2-D electrons in the region 1<ν<21<\nu<2

    Full text link
    Measurements of the reflectivity of a 2-D electron gas are used to deduce the polarization of the Composite Fermion hole system formed for Landau level occupancies in the regime 1<\nu<2. The measurements are consistent with the formation of a mixed spin CF system and allow the density of states or `polarization' effective mass of the CF holes to be determined. The mass values at \nu=3/2 are found to be ~1.9m_{e} for electron densities of 4.4 x 10^{11} cm^{-2}, which is significantly larger than those found from measurements of the energy gaps at finite values of effective magnetic field.Comment: 4 pages, 3 fig

    String compactification, QCD axion and axion-photon-photon coupling

    Full text link
    It is pointed out that there exist a few problems to be overcome toward an observable sub-eV QCD axion in superstring compactification. We give a general expression for the axion decay constant. For a large domain wall number NDWN_{DW}, the axion decay constant can be substantially lowered from a generic value of a scalar singlet VEV. The Yukawa coupling structure in the recent Z12IZ_{12-I} model is studied completely, including the needed nonrenormalizable terms toward realistic quark and lepton masses. In this model we find an approximate global symmetry and vacuum so that a QCD axion results but its decay constant is at the GUT scale. The axion-photon-photon coupling is calculated for a realistic vacuum satisfying the quark and lepton mass matrix conditions. It is the first time calculation of caγγc_{a\gamma\gamma} in realistic string compactifications: caγγ=5/31.930.26c_{a\gamma\gamma}={5/3}-1.93\simeq -0.26.Comment: 33 pages, 2 figures, JHEP format, some errors in the superpotential couplings are corrected and the following discussions are changed correspondingl

    Fractional Quantum Hall States in Low-Zeeman-Energy Limit

    Full text link
    We investigate the spectrum of interacting electrons at arbitrary filling factors in the limit of vanishing Zeeman splitting. The composite fermion theory successfully explains the low-energy spectrum {\em provided the composite fermions are treated as hard-core}.Comment: 12 pages, revte

    Charge Density Wave-Assisted Tunneling Between Hall Edge States

    Full text link
    We study the intra-planar tunneling between quantum Hall samples separated by a quasi one-dimensional barrier, induced through the interaction of edge degrees of freedom with the charge density waves of a Hall crystal defined in a parallel layer. A field theory formulation is set up in terms of bosonic (2+1)-dimensional excitations coupled to (1+1)-dimensional fermions. Parity symmetry is broken at the quantum level by the confinement of soliton-antisoliton pairs near the tunneling region. The usual Peierls argument allows to estimate the critical temperature TcT_c, so that for T>TcT > T_c mass corrections due to longitudinal density fluctuations disappear from the edge spectrum. We compute the gap dependence upon the random global phase of the pinned charge density wave, as well as the effects of a voltage bias applied across the tunneling junction.Comment: Additional references + 1 figure + more detailed discussions. To be published in Phys. Rev.

    Reaction Diffusion Models in One Dimension with Disorder

    Full text link
    We study a large class of 1D reaction diffusion models with quenched disorder using a real space renormalization group method (RSRG) which yields exact results at large time. Particles (e.g. of several species) undergo diffusion with random local bias (Sinai model) and react upon meeting. We obtain the large time decay of the density of each specie, their associated universal amplitudes, and the spatial distribution of particles. We also derive the spectrum of exponents which characterize the convergence towards the asymptotic states. For reactions with several asymptotic states, we analyze the dynamical phase diagram and obtain the critical exponents at the transitions. We also study persistence properties for single particles and for patterns. We compute the decay exponents for the probability of no crossing of a given point by, respectively, the single particle trajectories (θ\theta) or the thermally averaged packets (θˉ\bar{\theta}). The generalized persistence exponents associated to n crossings are also obtained. Specifying to the process A+AA+A \to \emptyset or A with probabilities (r,1r)(r,1-r), we compute exactly the exponents δ(r)\delta(r) and ψ(r)\psi(r) characterizing the survival up to time t of a domain without any merging or with mergings respectively, and δA(r)\delta_A(r) and ψA(r)\psi_A(r) characterizing the survival up to time t of a particle A without any coalescence or with coalescences respectively. θˉ,ψ,δ\bar{\theta}, \psi, \delta obey hypergeometric equations and are numerically surprisingly close to pure system exponents (though associated to a completely different diffusion length). Additional disorder in the reaction rates, as well as some open questions, are also discussed.Comment: 54 pages, Late

    A first-principles study of MgB2 (0001) surfaces

    Full text link
    We report self-consistent {\it ab initio} calculations of structural and electronic properties for the B- and Mg-terminated MgB2_{2} (0001) surfaces. We employ ultra-soft pseudopotentials and plane wave basis sets within the generalized gradient approximation. The surface relaxations are found to be small for both B- and Mg-terminated surfaces. For the B-terminated surface, both B σ{\sigma} and π{\pi} surface bands appear, while only one B π{\pi} surface band exists near the Fermi level for the Mg-terminated surface. The superconductivity of the MgB2_2 surfaces is discussed. The work function is predicted to be 5.95 and 4.25 eV for the B- and Mg-terminated surfaces respectively. The simulated scanning tunneling microscopy images of the surfaces are not sensitive to the sign and value of the bias voltages, but depend strongly on the tip-sample distance. An image reversal is predicted for the Mg-terminated surface.Comment: 3 pages, 4 figures, Revte

    Bulk-sensitive photoemission spectroscopy of A_2FeMoO_6 double perovskites (A=Sr, Ba)

    Full text link
    Electronic structures of Sr_2FeMoO_6 (SFMO) and Ba_2FeMoO_6 (BFMO) double perovskites have been investigated using the Fe 2p->3d resonant photoemission spectroscopy (PES) and the Cooper minimum in the Mo 4d photoionization cross section. The states close to the Fermi level are found to have strongly mixed Mo-Fe t_{2g} character, suggesting that the Fe valence is far from pure 3+. The Fe 2p_{3/2} XAS spectra indicate the mixed-valent Fe^{3+}-Fe^{2+} configurations, and the larger Fe^{2+} component for BFMO than for SFMO, suggesting a kind of double exchange interaction. The valence-band PES spectra reveal good agreement with the LSDA+U calculation.Comment: 4 pages, 3 figure
    corecore