32 research outputs found
Angle dependence of the orbital magnetoresistance in bismuth
We present an extensive study of angle-dependent transverse magnetoresistance
in bismuth, with a magnetic field perpendicular to the applied electric current
and rotating in three distinct crystallographic planes. The observed angular
oscillations are confronted with the expectations of semi-classic transport
theory for a multi-valley system with anisotropic mobility and the agreement
allows us to quantify the components of the mobility tensor for both electrons
and holes. A quadratic temperature dependence is resolved. As Hartman argued
long ago, this indicates that inelastic resistivity in bismuth is dominated by
carrier-carrier scattering. At low temperature and high magnetic field, the
threefold symmetry of the lattice is suddenly lost. Specifically, a
rotation of magnetic field around the trigonal axis modifies the amplitude of
the magneto-resistance below a field-dependent temperature. By following the
evolution of this anomaly as a function of temperature and magnetic field, we
mapped the boundary in the (field, temperature) plane separating two electronic
states. In the less-symmetric state, confined to low temperature and high
magnetic field, the three Dirac valleys cease to be rotationally invariant. We
discuss the possible origins of this spontaneous valley polarization, including
a valley-nematic scenario.Comment: 15 pages, 14 figure
Low-field magnetic anisotropy of Sr2IrO4
Magnetic anisotropy in strontium iridate (Sr2IrO4) is essential because of its strong spin–orbit coupling and crystal field effect. In this paper, we present a detailed mapping of the out-of-plane (OOP) magnetic anisotropy in Sr2IrO4 for different sample orientations using torque magnetometry measurements in the low-magnetic-field region before the isospins are completely ordered. Dominant in-plane anisotropy was identified at low fields, confirming the b axis as an easy magnetization axis. Based on the fitting analysis of the strong uniaxial magnetic anisotropy, we observed that the main anisotropic effect arises from a spin–orbit-coupled magnetic exchange interaction affecting the OOP interaction. The effect of interlayer exchange interaction results in additional anisotropic terms owing to the tilting of the isospins. The results are relevant for understanding OOP magnetic anisotropy and provide a new way to analyze the effects of spin–orbit-coupling and interlayer magnetic exchange interactions. This study provides insight into the understanding of bulk magnetic, magnetotransport, and spintronic behavior on Sr2IrO4 for future studies
Observation of In-Plane Magnetic Field Induced Phase Transitions in FeSe
We investigate thermodynamic properties of FeSe under in-plane magnetic fields using torque magnetometry, specific heat, and magnetocaloric measurements. Below the upper critical field Hc2, we observed the field induced anomalies at H1 ∼ 15 T and H2 ∼ 22 T near H ∥ ab and below a characteristic temperature T* ∼ 2 K. The transition magnetic fields H1 and H2 exhibit negligible dependence on both temperature and field orientation. This contrasts to the strong temperature and angle dependence of Hc2, suggesting that these anomalies are attributed to the field induced phase transitions, originating from the inherent spin-density-wave instability of quasipaticles near the superconducting gap minima or possible Flude-Ferrell-Larkin-Ovchinnikov state in the highly spin-polarized Fermi surfaces. Our observations imply that FeSe, an atypical multiband superconductor with extremely small Fermi energies, represents a unique model system for stabilizing unusual superconducting orders beyond the Pauli limit
Field-induced polarisation of Dirac valleys in bismuth
Electrons are offered a valley degree of freedom in presence of particular
lattice structures. Manipulating valley degeneracy is the subject matter of an
emerging field of investigation, mostly focused on charge transport in
graphene. In bulk bismuth, electrons are known to present a threefold valley
degeneracy and a Dirac dispersion in each valley. Here we show that because of
their huge in-plane mass anisotropy, a flow of Dirac electrons along the
trigonal axis is extremely sensitive to the orientation of in-plane magnetic
field. Thus, a rotatable magnetic field can be used as a valley valve to tune
the contribution of each valley to the total conductivity. According to our
measurements, charge conductivity by carriers of a single valley can exceed
four-fifth of the total conductivity in a wide range of temperature and
magnetic field. At high temperature and low magnetic field, the three valleys
are interchangeable and the three-fold symmetry of the underlying lattice is
respected. As the temperature lowers and/or the magnetic field increases, this
symmetry is spontaneously lost. The latter may be an experimental manifestation
of the recently proposed valley-nematic Fermi liquid state.Comment: 14 pages + 5 pages of supplementary information; a slightly modified
version will appear as an article in Nature physic
Observation of the in-plane magnetic field-induced phase transitions in FeSe
We investigate the thermodynamic properties of FeSe under the in-plane
magnetic fields using torque magnetometry, specific heat, magnetocaloric
measurements. Below the upper critical field Hc2, we observed the field-induced
anomalies at H1 ~ 15 T and H2 ~ 22 T near H//ab and below a characteristic
temperature T* ~ 2 K. The transition magnetic fields H1 and H2 exhibit
negligible dependence on both temperature and field orientation. This contrasts
with the strong temperature and angle dependence of Hc2, suggesting that these
anomalies are attributed to the field-induced phase transitions, originating
from the inherent spin-density-wave instability of quasiparticles near the
superconducting gap minima or possible Flude-Ferrell-Larkin-Ovchinnikov state
in the highly spin-polarized Fermi surfaces. Our observations imply that FeSe,
an atypical multiband superconductor with extremely small Fermi energies,
represents a unique model system for stabilizing unusual superconducting orders
beyond the Pauli limit.Comment: 8 pages, 4 figures, submitte