25 research outputs found

    Entropy-Preserving and Entropy-Stable Relaxation IMEX and Multirate Time-Stepping Methods

    Full text link
    We propose entropy-preserving and entropy-stable partitioned Runge--Kutta (RK) methods. In particular, we extend the explicit relaxation Runge--Kutta methods to IMEX--RK methods and a class of explicit second-order multirate methods for stiff problems arising from scale-separable or grid-induced stiffness in a system. The proposed approaches not only mitigate system stiffness but also fully support entropy-preserving and entropy-stability properties at a discrete level. The key idea of the relaxation approach is to adjust the step completion with a relaxation parameter so that the time-adjusted solution satisfies the entropy condition at a discrete level. The relaxation parameter is computed by solving a scalar nonlinear equation at each timestep in general; however, as for a quadratic entropy function, we theoretically derive the explicit form of the relaxation parameter and numerically confirm that the relaxation parameter works the Burgers equation. Several numerical results for ordinary differential equations and the Burgers equation are presented to demonstrate the entropy-conserving/stable behavior of these methods. We also compare the relaxation approach and the incremental direction technique for the Burgers equation with and without a limiter in the presence of shocks.Comment: 37 pages, 16 figures, 4 table

    Learning Subgrid-Scale Models in Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations

    Full text link
    The growing computing power over the years has enabled simulations to become more complex and accurate. However, high-fidelity simulations, while immensely valuable for scientific discovery and problem solving, come with significant computational demands. As a result, it is common to run a low-fidelity model with a subgrid-scale model to reduce the computational cost, but selecting the appropriate subgrid-scale models and tuning them are challenging. We propose a novel method for learning the subgrid-scale model effects when simulating partial differential equations using neural ordinary differential equations in the context of discontinuous Galerkin (DG) spatial discretization. Our approach learns the missing scales of the low-order DG solver at a continuous level and hence improves the accuracy of the low-order DG approximations as well as accelerates the filtered high-order DG simulations with a certain degree of precision. We demonstrate the performance of our approach through multidimensional Taylor--Green vortex examples at different Reynolds numbers and times, which cover laminar, transitional, and turbulent regimes. The proposed method not only reconstructs the subgrid-scale from the low-order (1st-order) approximation but also speeds up the filtered high-order DG (6th-order) simulation by two orders of magnitude.Comment: 15 figures, 2 tables, 22 page

    Effect of Milling on the Carbothermal Reduction of Oxide Mixture for (Ti,W)C-Ni

    Full text link

    Synthesis of Ni Nanopowders Using an EHA System

    Full text link

    Emission properties of Zinc Gallate nanophosphors

    Full text link
    corecore