46,166 research outputs found

    Neutrino Oscillations and Lepton Flavor Mixing

    Get PDF
    In view of the recent announcement on non-zero neutrino mass from Super-Kamiokande experiment, it would be very timely to investigate all the possible scenarios on masses and mixings of light neutrinos. Recently suggested mass matrix texture for the quark CKM mixing, which can be originated from the family permutation symmetry and its suitable breakings, is assumed for the neutrino mass matrix and determined by the four combinations of solar, atmospheric and LSND neutrino data and cosmological hot dark matter bound as input constraints. The charged-lepton mass matrix is assumed to be diagonal so that the neutrino mixing matrix can be identified directly as the lepton flavor mixing matrix and no CP invariance violation originates from the leptonic sector. The results favor hierarchical patterns for the neutrino masses, which follow from the case when either solar-atmospheric data or solar-HDM constraints are used.Comment: Latex, 9 page

    Spin Fluctuation Induced Dephasing in a Mesoscopic Ring

    Get PDF
    We investigate the persistent current in a hybrid Aharonov-Bohm ring - quantum dot system coupled to a reservoir which provides spin fluctuations. It is shown that the spin exchange interaction between the quantum dot and the reservoir induces dephasing in the absence of direct charge transfer. We demonstrate an anomalous nature of this spin-fluctuation induced dephasing which tends to enhance the persistent current. We explain our result in terms of the separation of the spin from the charge degree of freedom. The nature of the spin fluctuation induced dephasing is analyzed in detail.Comment: 4 pages, 4 figure

    Ultrafast all-optically controlled 2×2 crossbar switch

    Get PDF
    All-optical packet switching using all-optical routing control, where both ultrafast address recognition and routing of photonic packets were all optically performed on a header with 4 picosecond bit period, was demonstrated. Packets were self-routed through a node with no need for optoelectronic conversion. Terahertz optical asymmetric demultiplexer (TOAD) was used as an optically controlled 2×2 routing switch and as an all optical routing controller. TOAD read the individual address bits in the tightly compressed packet header and set the state of the routing switch. The bit-error rate at the switching element was measured to be less than 10-9

    Effect of Charge Fluctuations on the Persistent Current through a Quantum Dot

    Full text link
    We study coherent charge transfer between an Aharonov-Bohm ring and a side-attached quantum dot. The charge fluctuation between the two sub-structures is shown to give rise to algebraic suppression of the persistent current circulating the ring as the size of the ring becomes relatively large. The charge fluctuation at resonance provides transition between the diamagnetic and the paramagnetic states. Universal scaling, crossover behavior of the persistent current from a continuous to a discrete energy limit in the ring is also discussed.Comment: 5 pages, 4 figure

    Translated points and Rabinowitz Floer homology

    Full text link
    We prove that if a contact manifold admits an exact filling then every local contactomorphism isotopic to the identity admits a translated point in the interior of its support, in the sense of Sandon [San11b]. In addition we prove that if the Rabinowitz Floer homology of the filling is non-zero then every contactomorphism isotopic to the identity admits a translated point, and if the Rabinowitz Floer homology of the filling is infinite dimensional then every contactmorphism isotopic to the identity has either infinitely many translated points, or a translated point on a closed leaf. Moreover if the contact manifold has dimension greater than or equal to 3, the latter option generically doesn't happen. Finally, we prove that a generic contactomorphism on R2n+1\mathbb{R}^{2n+1} has infinitely many geometrically distinct iterated translated points all of which lie in the interior of its support.Comment: 13 pages, v2: numerous corrections, results unchange

    Diffusion-Limited Aggregation Processes with 3-Particle Elementary Reactions

    Full text link
    A diffusion-limited aggregation process, in which clusters coalesce by means of 3-particle reaction, A+A+A->A, is investigated. In one dimension we give a heuristic argument that predicts logarithmic corrections to the mean-field asymptotic behavior for the concentration of clusters of mass mm at time tt, c(m,t) m1/2(log(t)/t)3/4c(m,t)~m^{-1/2}(log(t)/t)^{3/4}, for 1<<m<<t/log(t)1 << m << \sqrt{t/log(t)}. The total concentration of clusters, c(t)c(t), decays as c(t) log(t)/tc(t)~\sqrt{log(t)/t} at t>t --> \infty. We also investigate the problem with a localized steady source of monomers and find that the steady-state concentration c(r)c(r) scales as r1(log(r))1/2r^{-1}(log(r))^{1/2}, r1r^{-1}, and r1(log(r))1/2r^{-1}(log(r))^{-1/2}, respectively, for the spatial dimension dd equal to 1, 2, and 3. The total number of clusters, N(t)N(t), grows with time as (log(t))3/2(log(t))^{3/2}, t1/2t^{1/2}, and t(log(t))1/2t(log(t))^{-1/2} for dd = 1, 2, and 3. Furthermore, in three dimensions we obtain an asymptotic solution for the steady state cluster-mass distribution: c(m,r)r1(log(r))1Φ(z)c(m,r) \sim r^{-1}(log(r))^{-1}\Phi(z), with the scaling function Φ(z)=z1/2exp(z)\Phi(z)=z^{-1/2}\exp(-z) and the scaling variable z m/log(r)z ~ m/\sqrt{log(r)}.Comment: 12 pages, plain Te

    Gauge/String-Gravity Duality and Froissart Bound

    Full text link
    The gauge/string-gravity duality correspondence opened renewed hope and possibility to address some of the fundamental and non-perturbative QCD problems in particle physics, such as hadron spectrum and Regge behavior of the scattering amplitude at high energies. One of the most fundamental and long-standing problem is the high energy behavior of total cross-sections. According to a series of exhaustive tests by the COMPETE group, (1). total cross-sections have a universal Heisenberg behavior in energy corresponding to the maximal energy behavior allowed by the Froissart bound, i.e., A+Bln2(s/s0)A + B ln^2 (s/s_0) with B0.32mbB \sim 0.32 mb and s034.41GeV2s_0 \sim 34.41 GeV^2 for all reactions, and (2). the factorization relation among σpp,even,σγp,andσγγ\sigma_{pp, even}, \sigma_{\gamma p}, and \sigma_{\gamma \gamma} is well satisfied by experiments. I discuss the recent interesting application of the gauge/string-gravity duality of AdS/CFTAdS/CFT correspondence with a deformed background metric so as to break the conformal symmetry that can lead to the Heisenberg behavior of rising total cross-sections, and present some preliminary results on the high energy QCD from Planckian scattering in AdSAdS and black-hole production.Comment: 10 pages, Presented to the Coral Gables Conference 2003, Launching of BelleE\'poque in High Energy Physics and Cosmology, 17 - 21 December 2003, Fort Lauderdale, Florid

    Modelling spatially regulated B-catenin dynamics & invasion in intestinal crypts

    Get PDF
    Experimental data (e.g., genetic lineage and cell population studies) on intestinal crypts reveal that regulatory features of crypt behavior, such as control via morphogen gradients, are remarkably well conserved among numerous organisms (e.g., from mouse and rat to human) and throughout the different regions of the small and large intestines. In this article, we construct a partial differential equation model of a single colonic crypt that describes the spatial distribution of Wnt pathway proteins along the crypt axis. The novelty of our continuum model is that it is based upon assumptions that can be directly related to processes at the cellular and subcellular scales. We use the model to predict how the distributions of Wnt pathway proteins are affected by mutations. The model is then extended to investigate how mutant cell populations can invade neighboring crypts. The model simulations suggest that cell crowding caused by increased proliferation and decreased cell loss may be sufficient for a mutant cell population to colonize a neighboring healthy crypt

    Reaction-diffusion with a time-dependent reaction rate: the single-species diffusion-annihilation process

    Full text link
    We study the single-species diffusion-annihilation process with a time-dependent reaction rate, lambda(t)=lambda_0 t^-omega. Scaling arguments show that there is a critical value of the decay exponent omega_c(d) separating a reaction-limited regime for omega > omega_c from a diffusion-limited regime for omega < omega_c. The particle density displays a mean-field, omega-dependent, decay when the process is reaction limited whereas it behaves as for a constant reaction rate when the process is diffusion limited. These results are confirmed by Monte Carlo simulations. They allow us to discuss the scaling behaviour of coupled diffusion-annihilation processes in terms of effective time-dependent reaction rates.Comment: 11 pages, 9 figures, minor correction
    corecore