3,799 research outputs found
Effects of the Spin-Orbit Coupling and the Superconductivity in simple-cubic alpha-Polonium
We have investigated the mechanism of stabilizing the simple-cubic (SC)
structure in polonium (alpha- Po), based on the phonon dispersion calculations
using the first-principles all-electron band method. We have demonstrated that
the stable SC structure results from the suppression of the Peierls instability
due to the strong spin-orbit coupling (SOC) in alpha-Po. Further, we have
explored the possible superconductivity in alpha-Po, and predicted that it
becomes a superconductor with Tc ~ 4 K. The transverse soft phonon mode at q ~
2/3 R, which is greatly influenced by the SOC, plays an important role both in
the structural stability and the superconductivity in alpha-Po. We have
discussed effects of the SOC and the volume variation on the phonon dispersions
and superconducting properties of alpha-Po.Comment: 5pages, 5figure
Pressure-induced Phonon Softenings and the Structural and Magnetic Transitions in CrO
To investigate the pressure-induced structural transitions of chromium
dioxide (CrO), phonon dispersions and total energy band structures are
calculated as a function of pressure. The first structural transition has been
confirmed at P 10 GPa from the ground state tetragonal CrO
(t-CrO) of rutile type to orthorhombic CrO (o-CrO) of
CaCl type. The half-metallic property is found to be preserved in
o-CrO. The softening of Raman-active B phonon mode, which is
responsible for this structural transition, is demonstrated. The second
structural transition is found to occur for P 61.1 GPa from ferromagnetic
(FM) o-CrO to nonmagnetic (NM) monoclinic CrO (m-CrO) of
MoO type, which is related to the softening mode at {\bf q} =
R(1/2,0,1/2). The third structural transition has been newly identified at P=
88.8 GPa from m-CrO to cubic CrO of CaF type that is a FM
insulator
Electron and phonon band-structure calculations for the antipolar SrPtP antiperovskite superconductor: Evidence of low-energy two-dimensional phonons
SrPt3P has recently been reported to exhibit superconductivity with Tc = 8.4
K. To explore its superconducting mechanism, we have performed electron and
phonon band calculations based on the density functional theory, and found that
the superconductivity in SrPt3P is well described by the strong coupling
phonon-mediated mechanism. We have demonstrated that superconducting charge
carriers come from pd\pi-hybridized bands between Pt and P ions, which couple
to low energy (~ 5 meV) phonon modes confined on the ab in-plane. These
in-plane phonon modes, which do not break antipolar nature of SrPt3P, enhance
both the electron-phonon coupling constant \lambda and the critical temperature
Tc. There is no hint of a specific phonon softening feature in the phonon
dispersion, and the effect of the spin-orbit coupling on the superconductivity
is found to be negligible.Comment: 5 pages, 5 figures, 1 tabl
- β¦