3,799 research outputs found

    Effects of the Spin-Orbit Coupling and the Superconductivity in simple-cubic alpha-Polonium

    Full text link
    We have investigated the mechanism of stabilizing the simple-cubic (SC) structure in polonium (alpha- Po), based on the phonon dispersion calculations using the first-principles all-electron band method. We have demonstrated that the stable SC structure results from the suppression of the Peierls instability due to the strong spin-orbit coupling (SOC) in alpha-Po. Further, we have explored the possible superconductivity in alpha-Po, and predicted that it becomes a superconductor with Tc ~ 4 K. The transverse soft phonon mode at q ~ 2/3 R, which is greatly influenced by the SOC, plays an important role both in the structural stability and the superconductivity in alpha-Po. We have discussed effects of the SOC and the volume variation on the phonon dispersions and superconducting properties of alpha-Po.Comment: 5pages, 5figure

    Large Object Caching for Distributed Multimedia Information Systems

    Get PDF

    Pressure-induced Phonon Softenings and the Structural and Magnetic Transitions in CrO2_{2}

    Full text link
    To investigate the pressure-induced structural transitions of chromium dioxide (CrO2_{2}), phonon dispersions and total energy band structures are calculated as a function of pressure. The first structural transition has been confirmed at Pβ‰ˆ\approx 10 GPa from the ground state tetragonal CrO2_{2} (t-CrO2_{2}) of rutile type to orthorhombic CrO2_{2} (o-CrO2_{2}) of CaCl2_{2} type. The half-metallic property is found to be preserved in o-CrO2_{2}. The softening of Raman-active B1g_{1g} phonon mode, which is responsible for this structural transition, is demonstrated. The second structural transition is found to occur for Pβ‰₯\geq 61.1 GPa from ferromagnetic (FM) o-CrO2_{2} to nonmagnetic (NM) monoclinic CrO2_{2} (m-CrO2_{2}) of MoO2_{2} type, which is related to the softening mode at {\bf q} = R(1/2,0,1/2). The third structural transition has been newly identified at P= 88.8 GPa from m-CrO2_{2} to cubic CrO2_{2} of CaF2_{2} type that is a FM insulator

    Electron and phonon band-structure calculations for the antipolar SrPt3_{3}P antiperovskite superconductor: Evidence of low-energy two-dimensional phonons

    Full text link
    SrPt3P has recently been reported to exhibit superconductivity with Tc = 8.4 K. To explore its superconducting mechanism, we have performed electron and phonon band calculations based on the density functional theory, and found that the superconductivity in SrPt3P is well described by the strong coupling phonon-mediated mechanism. We have demonstrated that superconducting charge carriers come from pd\pi-hybridized bands between Pt and P ions, which couple to low energy (~ 5 meV) phonon modes confined on the ab in-plane. These in-plane phonon modes, which do not break antipolar nature of SrPt3P, enhance both the electron-phonon coupling constant \lambda and the critical temperature Tc. There is no hint of a specific phonon softening feature in the phonon dispersion, and the effect of the spin-orbit coupling on the superconductivity is found to be negligible.Comment: 5 pages, 5 figures, 1 tabl
    • …
    corecore