2 research outputs found

    Anti-inflammatory activity of hydrosols from Tetragonia tetragonoides in LPS-induced RAW 264.7 cells

    Get PDF
    The present study was performed to investigate the anti-inflammatory activity of Tetragonia tetragonoides hydro- sols (TTH) and its underlying mechanism in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Gas chromatog- raphy (GC) coupled with mass spectrometry and retention index calculations showed that TTH were mainly com- posed of tetratetracontane (29.5 %), nonacosane (27.6 %), and oleamide (17.1 %). TTH significantly decreased the production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-6, and IL-1β in LPS-stimulated RAW 264.7 cells. Consistent with these observations, TTH treatment decreased the protein expression levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). The molecular mechanism of its anti-inflamma- tory activity was found to be associated with inhibition of nuclear factor-kappa B (NF-κB) phosphorylation and nuclear translocation of NF-κB 65. Furthermore, TTH markedly suppressed the LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs). Taken together, these data indicate that TTH exerts an anti-inflam- matory activity by inhibiting the NF-κB and MAPK signaling pathways in LPS-stimulated RAW 264.7 cells

    Comprehensive in vitro and in vivo investigations of the therapeutic potential of Jeju lava seawater salt in osteoarthritis

    No full text
    Abstract Salts play a crucial role in maintaining human health by regulating fluid levels and supporting various physiological processes. However, conventional seawater-derived salts are associated with microplastic pollution and pose potential health risks. Jeju lava seawater (JLS), sourced exclusively from Jeju Island, has emerged as a unique alternative, free of microplastics and enriched with essential minerals such as magnesium, calcium, zinc, and iron. In this study, we investigated the effects of JLS on osteoarthritis (OA) pathogenesis, focusing on chondrocyte metabolism and OA development. We performed surgical destabilization of the medial meniscus to establish a murine model of OA. We examined the expression of catabolic and anabolic factors in JLS-treated chondrocytes. Our cell viability assay revealed that JLS treatment was not cytotoxic to chondrocytes at concentrations ≤ 0.5%. Additionally, JLS treatment resulted in a concentration-dependent increase in the expression of anabolic factors like aggrecan, SOX9, and COL2A1 while decreasing the expression of catabolic factors such as MMP3, MMP13, ADAMTS4, and ADAMTS5 in the chondrocytes stimulated with pro-inflammatory cytokines. Although not statistically significant compared to the control group, JLS intake slightly attenuated the OARSI score, osteophyte score, synovitis score, subchondral bone thickness, and osteophyte size in the  mouse model of OA. Conclusively, these results suggest that JLS ameliorates OA by positively influencing chondrocyte metabolism, making it a promising therapeutic candidate for OA management
    corecore