15 research outputs found

    Pre-set extrusion bioprinting for multiscale heterogeneous tissue structure fabrication

    Get PDF
    Recent advances in three-dimensional bioprinting technology have led to various attempts in fabricating human tissue-like structures. However, current bioprinting technologies have limitations for creating native tissue-like structures. To resolve these issues, we developed a new pre-set extrusion bioprinting technique that can create heterogeneous, multicellular, and multimaterial structures simultaneously. The key to this ability lies in the use of a precursor cartridge that can stably preserve a multimaterial with a pre-defined configuration that can be simply embedded in a syringe-based printer head. The multimaterial can be printed and miniaturized through a micro-nozzle without conspicuous deformation according to the pre-defined configuration of the precursor cartridge. Using this system, we fabricated heterogeneous tissue-like structures such as spinal cords, hepatic lobule, blood vessels, and capillaries. We further obtained a heterogeneous patterned model that embeds HepG2 cells with endothelial cells in a hepatic lobule-like structure. In comparison with homogeneous and heterogeneous cell printing, the heterogeneous patterned model showed a well-organized hepatic lobule structure and higher enzyme activity of CYP3A4. Therefore, this pre-set extrusion bioprinting method could be widely used in the fabrication of a variety of artificial and functional tissues or organs

    Precise stacking of decellularized extracellular matrix based 3D cell-laden constructs by a 3D cell printing system equipped with heating modules

    Get PDF
    Three-dimensional (3D) cell printing systems allow the controlled and precise deposition of multiple cells in 3D constructs. Hydrogel materials have been used extensively as printable bioinks owing to their ability to safely encapsulate living cells. However, hydrogel-based bioinks have drawbacks for cell printing, e.g. inappropriate crosslinking and liquid-like rheological properties, which hinder precise 3D shaping. Therefore, in this study, we investigated the influence of various factors (e.g. bioink concentration, viscosity, and extent of crosslinking) on cell printing and established a new 3D cell printing system equipped with heating modules for the precise stacking of decellularized extracellular matrix (dECM)-based 3D cell-laden constructs. Because the pH-adjusted bioink isolated from native tissue is safely gelled at 37 degrees C, our heating system facilitated the precise stacking of dECM bioinks by enabling simultaneous gelation during printing. We observed greater printability compared with that of a non-heating system. These results were confirmed by mechanical testing and 3D construct stacking analyses. We also confirmed that our heating system did not elicit negative effects, such as cell death, in the printed cells. Conclusively, these results hold promise for the application of 3D bioprinting to tissue engineering and drug development.119Ysciescopu

    Comprehensive Analysis of the Impact of TWDP Fading on the Achievable Error Rate Performance of BPSK Signaling

    Full text link

    Three-Dimensional Hepatocellular Carcinoma/Fibroblast Model on a Nanofibrous Membrane Mimics Tumor Cell Phenotypic Changes and Anticancer Drug Resistance

    Full text link
    Three-dimensional (3D) in vitro tissue or organ models can effectively mimic the complex microenvironment of many types of human tissues for medical applications. Unfortunately, development of 3D cancer models, which involve cancer/stromal cells in a 3D environment, has remained elusive due to the extreme complexity of the tumor microenvironment (TME) and the stepwise progression of human cancer. Here, we developed hepatocellular carcinoma (HCC) models, which consist of fibroblasts as stromal cells, HCC cells, and a nanofibrous membrane to mimic the complex TME. The 3D HCC models were fabricated using three distinct culture methods: cancer cells grown directly on the nanofibrous membrane (mono model), fibroblasts covering the nanofibrous membrane (layer model), and both cancer cells and fibroblasts grown on the nanofibrous membrane (mixed model). Interestingly, the mono model and layer model showed similar tissue structures, whereas the mixed model resulted in phenotypic changes to the cancer cells. Further analysis demonstrated that the mixed models promoted the expression of fibronectin and vimentin, and showed higher resistance to anticancer drugs compared with the other models. Thus, our 3D HCC model could be utilized for testing efficient anticancer therapies at various stages of cancer, with potential application to different tumor types

    Overcome the barriers of the skin: exosome therapy

    Full text link
    Abstract Exosomes are nano-sized cargos with a lipid bilayer structure carrying diverse biomolecules including lipids, proteins, and nucleic acids. These small vesicles are secreted by most types of cells to communicate with each other. Since exosomes circulate through bodily fluids, they can transfer information not only to local cells but also to remote cells. Therefore, exosomes are considered potential biomarkers for various treatments. Recently, studies have shown the efficacy of exosomes in skin defects such as aging, atopic dermatitis, and wounds. Also, exosomes are being studied to be used as ingredients in commercialized skin treatment products. In this review, we discussed the need for exosomes in skin therapy together with the current challenges. Moreover, the functional roles of exosomes in terms of skin treatment and regeneration are overviewed. Finally, we highlighted the major limitations and the future perspective in exosome engineering

    Fabrication of In Vitro Cancer Microtissue Array on Fibroblast-Layered Nanofibrous Membrane by Inkjet Printing

    Full text link
    In general, a drug candidate is evaluated using 2D-cultured cancer cells followed by an animal model. Despite successful preclinical testing, however, most drugs that enter human clinical trials fail. The high failure rates are mainly caused by incompatibility between the responses of the current models and humans. Here, we fabricated a cancer microtissue array in a multi-well format that exhibits heterogeneous and batch-to-batch structure by continuous deposition of collagen-suspended Hela cells on a fibroblast-layered nanofibrous membrane via inkjet printing. Expression of both Matrix Metalloproteinase 2 (MMP2) and Matrix Metalloproteinase 9 (MMP9) was higher in cancer microtissues than in fibroblast-free microtissues. The fabricated microtissues were treated with an anticancer drug, and high drug resistance to doxorubicin occurred in cancer microtissues but not in fibroblast-free microtissues. These results introduce an inkjet printing fabrication method for cancer microtissue arrays, which can be used for various applications such as early drug screening and gradual 3D cancer studies

    Modular Fabrication of Hybrid Bulk Heterojunction Solar Cells Based on Breakwater-like CdSe Tetrapod Nanocrystal Network Infused with P3HT

    Full text link
    We demonstrate the modular fabrication of nanocrystal/polymer hybrid bulk heterojunction solar cells based on breakwater-like CdSe tetrapod (TP) nanocrystal networks infused with poly­(3-hexylthiophene) (P3HT). This fabrication method consists of sequential steps for forming the hybrid active layers: the assembly of a breakwater-like CdSe TP network followed by nanocrystal surface modification and the infusion of semiconducting polymers. Such a modular approach enables the independent control of the nanoscopic morphology and surface chemistry of the nanocrystals, which are generally known to exhibit complex correlations, in a reproducible manner. Using these devices, the influence of the passivation ligands on solar cell characteristics could be clarified from temperature-dependent solar cell experiments. We found that a 2-fold increase in the short-circuit current with 1-hexylamine ligands, compared with the value based on pyridine ligands, originates from the reduced depth of trap states, minimizing the trap-assisted bimolecular recombination process. Overall, the work presented herein provides a versatile approach to fabricating nanocrystal/polymer hybrid solar cells and systematically analyzing the complex nature of these devices
    corecore