46,234 research outputs found
Imaging of fuel mixture fraction oscillations in a driven system using acetone PLIF
Measurements of fuel mixture fraction are made for a jet flame in an acoustic chamber. Acoustic forcing creates a
spatially-uniform, temporally-varying pressure field which results in oscillatory behavior in the flame . Forcing is at 22,27, 32, 37, and 55 Hz. To asses the oscillatory behavior, previous work included chemiluminescence, OH PUF, nitric oxide PUF imaging, and fuel mixture fraction measurements by infrared laser absorption. While these results illuminated what was happening to the flame chemistry, they did not provide a complete explanation as to why these things were happening. In this work, the fuel mixture fraction is measured through PUF of acetone, which is introduced into the fuel stream as a marker. This technique enables a high degree of spatial resolution of fuel/air mixture value. Both non-reacting and reacting cases were measured and comparisons are drawn with the results from the previous work. It is found that structure in the mixture fraction oscillations is a major contributor to the magnitude of the flame oscillations
An experimental study of coupling between combustor pressure, fuel/air mixing, and the flame
Fuel-air mixing behavior under the influence of imposed acoustic oscillations has been studied by investigating the response of the fuel mixture fraction field. The distribution of local fuel mixture fraction inside the mixing zone, which is expected to evolve into the local equivalence ratio in the flame zone, is closely coupled to unstable and oscillatory flame behavior. The Experiment was performed with an aerodynamically-stabilized non-premixed burner. In this study, acoustic oscillations were imposed at 22, 27, 32, 37, and 55Hz. Phase-resolved acetone PLIF was used to image the flow field of both isothermal and reacting flow cases and this data along with the derived quantities of temporal and spatial unmixedness were employed for analysis. The behavior of the unmixedness factor is compared with the previous measurements of oscillations in the flame zone. This comparison shows that local oscillations (of order millimeters or smaller) in fuel/air mixing are closely related to the oscillatory behavior of the flame. For each driving frequency, the mixture fraction oscillates at that frequency but with a slight phase difference between it and the pressure field/flame intensity, indicating that the fuel mixture fraction oscillation are likely the major reason for oscillatory behaviors of this category of flames and combustor geometry
Quark fragmentation in the -vacuum
The vacuum of Quantum Chromodynamics is a superposition of degenerate states
with different topological numbers that are connected by tunneling (the
-vacuum). The tunneling events are due to topologically non-trivial
configurations of gauge fields (e.g. the instantons) that induce local \p-odd
domains in Minkowski space-time. We study the quark fragmentation in this
topologically non-trivial QCD background. We find that even though QCD globally
conserves \p and \cp symmetries, two new kinds of \p-odd fragmentation
functions emerge. They generate interesting dihadron correlations: one is the
azimuthal angle correlation usually referred to as
the Collins effect, and the other is the \p-odd correlation that vanishes in the cross section summed over many events, but
survives on the event-by-event basis. Using the chiral quark model we estimate
the magnitude of these new fragmentation functions. We study their experimental
manifestations in dihadron production in collisions, and comment on
the applicability of our approach in deep-inelastic scattering, proton-proton
and heavy ion collisions.Comment: 4 pages, 2 figure
Efficiency of Nonlinear Particle Acceleration at Cosmic Structure Shocks
We have calculated the evolution of cosmic ray (CR) modified astrophysical
shocks for a wide range of shock Mach numbers and shock speeds through
numerical simulations of diffusive shock acceleration (DSA) in 1D quasi-
parallel plane shocks. The simulations include thermal leakage injection of
seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion
is assumed. We model shocks similar to those expected around cosmic structure
pancakes as well as other accretion shocks driven by flows with upstream gas
temperatures in the range K and shock Mach numbers spanning
. We show that CR modified shocks evolve to time-asymptotic states
by the time injected particles are accelerated to moderately relativistic
energies (p/mc \gsim 1), and that two shocks with the same Mach number, but
with different shock speeds, evolve qualitatively similarly when the results
are presented in terms of a characteristic diffusion length and diffusion time.
For these models the time asymptotic value for the CR acceleration efficiency
is controlled mainly by shock Mach number. The modeled high Mach number shocks
all evolve towards efficiencies %, regardless of the upstream CR
pressure. On the other hand, the upstream CR pressure increases the overall CR
energy in moderate strength shocks (). (abridged)Comment: 23 pages, 12 ps figures, accepted for Astrophysical Journal (Feb. 10,
2005
Photoemission and x-ray absorption spectroscopy study of electron-doped colossal magnetoresistance manganite: La0.7Ce0.3MnO3 film
The electronic structure of La0.7Ce0.3MnO3 (LCeMO) thin film has been
investigated using photoemission spectroscopy (PES) and x-ray absorption
spectroscopy (XAS). The Ce 3d core-level PES and XAS spectra of LCeMO are very
similar to those of CeO2, indicating that Ce ions are far from being trivalent.
A very weak 4f resonance is observed around the Ce 4d 4f absorption edge,
suggesting that the localized Ce 4f states are almost empty in the ground
state. The Mn 2p XAS spectrum reveals the existence of the Mn(2+) multiplet
feature, confirming the Mn(2+)-Mn(3+) mixed-valent states of Mn ions in LCeMO.
The measured Mn 3d PES/XAS spectra for LCeMO agrees reasonably well with the
calculated Mn 3d PDOS using the LSDA+U method. The LSDA+U calculation predicts
a half-metallic ground state for LCeMO.Comment: 7 pages, 7 figure
Molecular Motor Constructed from a Double-Walled Carbon Nanotube Driven by Axially Varying Voltage
A new molecular motor is conceptually constructed from a double-walled carbon
nanotube (DWNT) consisting of a long inner single-walled carbon nanotube (SWNT)
and a short outer SWNT with different chirality. The interaction between inner
and outer tubes is the sum of the Lennard-Jones potentials between carbon atoms
in inner tube and those in outer one. Within the framework of
Smoluchowski-Feynman ratchet, it is theoretically shown that this system in an
isothermal bath will exhibit a unidirectional rotation in the presence of a
varying axial electrical voltage.Comment: 11 pages + 3 figure
- …